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Abstract
Nonlinear relationships among random variables often come out in all fields of economics.

The academic debate on how to deal with nonlinearities, from a statistical point of view, has

been centered in developing new estimation methods or modifying the specification of the

classic linear econometric models. Here, we propose to face this issue by deriving population

regression models from conditional distributions with genuine nonlinear conditional means.

Such a mathematical procedure guarantees not only a consistent derivation of the conditional

mean that gives rise to a nonlinear econometric model, but also a proper analysis of the causal

effects among the involved economic variables (i.e., partial effects). Finally, we exemplify the

workings of this approach by specifying a nonlinear and heteroskedastic econometric model

based on the Gumbel distribution.

Resumen
Relaciones de tipo no lineal entre variables aparecen de manera frecuente en todos los campos

de la economı́a. El debate académico sobre como modelar dichas relaciones, desde un punto

de vista estad́ıstico, ha estado centrado en el desarrollo de nuevos métodos de estimación o en

la especificación de los componentes del modelo clásico de regresión lineal. En este art́ıculo

proponemos enfrentar dicho problema derivando los modelos de regresión poblacional a partir

de funciones de densidad condicionales con medias no-lineales genuinas. Este procedimiento

matemático garantiza no sólo una consistente derivaciónde la media condicional que da origen

a un modelo econométrico no lineal, sino también un análisis más apropiado de los efectos

causales entre las variables económicas involucradas (efectos marginales). Finalmente, se

presenta un ejemplo del funcionamiento de dicho procedimiento mediante la especificación de

un modelo econométrico no lineal y heteroscedastico que surge de una distribución Gumbel.
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1. Introduction
The existence of nonlinear relationships among economic variables is always
controversial. This issue becomes more complicated when applied researchers
find nonlinearities that the economic theory does not predict or estimate linear
models that do not properly fit the data. Here, we argue that, from a statistical
point of view, we can avoid controversies by using conditional probability
densities f(y|x) as the basis to derive the nonlinear conditional means E(y |
x) = m(x, θ) that give rise to reliable econometric models y = m(x, θ)+e, rather
than assuming the standard functional forms of the conditional mean suggested
in the econometrics textbooks. That is, we propose starting the specification of
the econometric model by assuming a proper conditional density, for the data
on hand, and derive the associated regression and skedastic functions from it by
taking the expected value of the explained variable y given the set of explanatory
variables x.

In other words, we show how to use a statistical procedure to derive proper
econometric models that capture genuine nonlinear relationships. To do so, we
assume suitable conditional probability distributions that give rise to nonlinear
regression functions (Spanos, 1986). We exemplify this approach by deriving a
population regression model that can be useful to analyze a nonlinear
relationship between economic variables. Specifically, we use a Gumbel
conditional distribution as the basis to derive the nonlinear regression curves
that might describe such type of phenomena. The Gumbel regression model
allows us to briefly illustrate two interesting facts. First, we show how
a nonlinear relationship might be well represented by an exponential
distribution and its associated regression model (Gumbel 1960); which
has a nonlinear conditional mean and a heteroskedastic conditional variance.
Second, we show that a non linear model like the Gumbel regression exhibits
changing partial effects of the explanatory variables over the entire distribution
of the explained variable, which is not the case in a normal-linear model. These
facts might be useful to elucidate controversial economic arguments when the
empirical data exhibit nonlinearities.

This paper is structured as follows. The second section briefly discusses the
general statistical approach to derive linear or non-linear econometric models in
a stochastic setting. In the third section, we exemplify the statistical approach
by discussing the specification, estimation, and validation of the Gumbel
regression model. In the last section, we make some remarks on the implications
of the employed approach.
2. Deriving Nonlinear Regression Models
In the context of a modern approach to econometrics any linear or nonlinear
model can be specified by making assumptions on two components: 1) the
population regression model, and 2) the sampling model (Wooldrige, 2010).
The first assumption refers to the functional form of the conditional mean that
describes the stochastic relationship between y and x. The second assumption
refers to the probabilistic behavior of the sample. Here, we only deal with the
derivation of the population regression model that gives rise to the nonlinear
relationships among a set of economic variables so, for the sake of simplicity, we
assume that we have an independent and identically distributed sample (iid) in
the rest of the paper.
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Let us define the population regression model by assuming that
any stochastic variable can be decomposed, by definition, into two parts: a
conditional expectation E(y | x) and an iid error term e. In other words, we
can always write any explained variable y as its conditional expectation E(y|x)
plus an error term or disturbance term e that has conditional mean zero

y = E (y|x) + e with eiid(0, σ2), and (1)

E (e|x) = 0, (2)

Equation (2) implies that the unconditional error is a random variable with
zero mean and is not correlated with each of the explanatory variables and any
functions of them. It is worth mentioning that these two equations also imply
a set of testable statistical assumptions, while working with real data.

Under the assumption of a random sample, equation (1) implies that the
applied econometrician needs to propose a specific functional form for
the conditional mean E(y | x), which is almost always assumed to be a linear
equation E(y | x) = β0+β1x. However, when dealing with a nonlinear problem,
either in parameters or in variables, the textbook approach does not suggest
a clear procedure on how to obtain the genuine nonlinear conditional mean
E(y | x) = m(x, θ) that shapes the econometric model.

In order to fill this gap we propose to assume a conditional distribution,
based on the empirical distribution of the data on hand, and derive its regression
function; rather than assuming an arbitrary functional form of the conditional
mean in equation (1), (Spanos, 1986). To illustrate the workings of this
approach, we first derive the typical normal-linear econometric model, not only
based on equations (1) and (2), but also on a normal conditional density that
gives rise to the conditional mean that defines equation (1). So, let us assume
that the data is described by a conditional normal distribution of y given x and
that the variances of the involved normal random variables y and x are constant

f (y|x) =
1

2
√

2πσ2
e
−
{

(y−β0−β1x)2

2σ2

}
.

(3)

Then, we proceed to compute the conditional expectation of y given x based
on such conditional density function

E (y|x) =

∞∫

−∞

yf (y|x) dx, (4)

which gives rise to the following genuine linear conditional mean:

E (y|x) = β0 + β1x (5)

with the following statistical parameterization

β0 = E (y) − β1E(x) and β1 =
E (x − E (x)) (y − E (y))

E(x − E (x))2
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Once we have mathematically obtained the conditional mean in equation
(5), we are in a position to specify the normal-linear-homoskedastic regression
model by using equations (1) and (2)

y = β0 + β1x + e e ∼ Niid(0, σ2) and (6)

E(e | x) = 0 (7)

where e is a Normal, independent, and identically Distributed (Niid) error.
Sometimes, we are interested in a particular function called partial effect

(i.e., marginal effect) that shows the response of the conditional mean to a unit
change in one of the explanatory variables. Equation (8) below shows that, in
the normal-linear regression model, the effect of x on y is constant

∂E(y|x)
dx

= β1 (8)

Note that, when the probabilistic features of the data are not compatible with
the normality assumption, the conditional mean will not always be a linear
function. This implies that the partial effect, in equation (8), will not necessarily
be a constant in models with different distributive assumptions. Thus, an
advantage of assuming conditional densities, rather than the functional forms
of the mean, is that we can use densities with genuine nonlinear means; which
we can choose by assessing the empirical features of the data on hand.

In the next section we show how we can use this setup to derive other
econometric model by incorporating different conditional distributions, where
the mean or average causal effect of the explanatory variable on the explained
variable will not be linear. Specifically, we change the assumption of normality
not only for the partial densities of y and x, but also for the conditional density;
so that we are able to obtain a valid nonlinear population regression model.
3. The Gumbel Linear Regression Model
Here, we exemplify the workings of the previous approach by specifying the
Gumbel regression model, although we can easily use other conditional densities
to specify other population regression models. To do this, we first assume that
a Gumbel joint density is a good representation of the joint stochastic behavior
of y and x. Then, we derive the conditional density of y given x and derive its
nonlinear conditional expectation by integration. Finally, we embed our derived
conditional expectation in our econometric setup, given by equations (1) and
(2), to end up with a proper nonlinear econometric model with heterogeneous
partial effects. In what follows we describe such statistical procedure step by
step.
A. Observational Data and Model Specification
A preliminary step to specify a proper conditional model that accounts for
nonlinear relationships, among a set of random variables, is to discuss
the statistical properties of such variables. That is, in selecting a proper
econometric model we should take into account not only theoretical issues, but
also all the statistical systematic information in the data (Spanos 1986). In
fact, a brief analysis, of different types of graphs, might reveal the empirical
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distribution that could be a good assumption for the data on hand. Kernel
estimates of the univariate empirical densities (Silverman, 1998) can also be
useful to assess departures from the normality assumption. We can get more
information about the underlying joint density of the data by looking at the
kernel estimate of the empirical joint distribution and the probability contour
plot with the potential empirical regression curves. In other words, we can
anticipate the presence of a potential nonlinear conditional distribution and its
associated regression function by using a set of graphical tools.
B. Model Specification
Let us assume that a good empirical representation of the distribution that
governs the joint behavior of the data on hand is a Gumbel distribution
(Gumbel, 1960: Castillo, 2005). Thus, in what follows we can specify the
Gumbel regression model that implies a nonlinear regression curve with non
constant partial effects (Kotz, et al. 2000).

We start with the bivariate Gumbel distribution function, which is defined
for positive values of the involved random variables:

F (x, y) = 1− e−x − e−y + e−(x+y+δxy), 0 ≤ x, 0 ≤
y, (0 ≤ δ ≤ 1)

(9)

where δ is the parameter that describes the probabilistic dependence between
the two random variables y and x, which is limited to take values between 0 and
1. The joint probability density function of the Gumbel model can be derived
by differentiating equation (9)

f (x, y) =
∂2F (x, y)

∂x∂y
(10)

Then, the conditional density function of y given x can be derived by dividing
the joint density by the marginal density of x

f (y|x) =
f(x, y)
fx(x)

=
[(1 + δy) (1 + δx) − δ]e−(y+x+δxy)

e−x
. (11)

The conditional expectation of y given x is given by:

E (y|x) =

∞∫

0

yf (y|x) dy =
1 + δ + δx

(1 + δx)2
(12)

Similarly, we could also get the conditional expectation of x given y, E[x | y],
by using the equivalent formulae, given the symmetric nature of the Gumbel
distribution. Now, we are in a position to specify the Gumbel regression model.
According to equation (1), the stochastic variable y can be decomposed, by
definition, into two components: a non linear conditional expectation and an
error term e as follows

y =
1 + δ + δx

(1 + δx)2
+ e ∼ where, e ∼ Diid(0, σ2), (13)



110 Nueva Época REMEF (The Mexican Journal of Economics and Finance)

E(ei/xi) = 0, (14)

It is worth mentioning that the distribution D = fe(e) of the error term e
has a closed but complex form given by

fe (e) =
δe

2
+ 2

√
π

δ
exp

(
δe2

4

)
erf

(
2
√

δe

2

)

{
(1 − δ + δe) exp (−e)

−e

2

((
1 − δe2

2

))} , (15)

for 0 < e < ∞.

Note that the analytical form of the marginal distribution in equation

(17) includes the so- called error function:erf (x) = 2
π

x

∫
0

exp(−t2)dt (Naradajah,

2008). Next, we can derive the conditional variance and partial effect for the
Gumbel model:

σ2(y|x) =
(1 + δ + δx)2 − 2δ2

(1 + δx)4
(16)

dE(y|x)
dx

= −δ(1 + δ + δx)
(1 + δx)3

. (17)

Equation (13) suggests that the mean or average causal effect of the explanatory
variable on the dependent variable is not linear. Moreover, the conditional
variance in equation (16) is heteroskedastic. Besides, the negative marginal
effect in equation (17) is heterogeneous and decreasing. Therefore, we can see
that the model in equation (13) is completely different to the model in equation
(6), since the Gumbel regression model does not imply a constant effect of the
explanatory variable over the entire density of the dependent variable. The
economic meaning of a negative nonlinear relationship, in this context, is that
the mean or average causal effect of x on y is negative and decreasing. That is,
the average value of y does not change at a constant rate as x changes, which
means that we can have heterogeneous partial effects (changing partial effects).
Even more important is the fact that the suggested model implies that there
might be a decreasing tradeoff between y and x, which s clearly associated to
the nonlinear nature of the Gumbel model.
C. Estimation Method
In the previous section we + propose a specification of a non linear and
heteroskedatic regression model derived from an Gumbel distribution. Now, we
need to estimate the value of the dependence parameter δ that determines not
only the conditional mean, but also the conditional variance as suggested by
equations (13) and (16).

As we discuss above, the Gumbel regression model takes the form:

y =
1 + δ + δx

(1 + δx)2
+ e with e ∼ Diid(0, σ2)
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σ2(y|x) =
(1 + δ + δx)2 − 2δ2

(1 + δx)4

Where e ∼ Diid(0, σ2) and σ2 is the conditional variance.
From these equations, we can see that the conditional mean of the Gumbel

model is not linear in its conditioning variable x and unknown parameter δ,
and the conditional variance is not homoskedastic. Under the random sample
assumption, the maximum likelihood estimate of δ can be obtained by solving
the following equation ((Kotz, et al. 2000):

n∑

i=1

(
xi + yi − 1 + 2δxiyi

1 + (xi + yi − 1) δ + xi + yδ2

)
=

n∑

i=1

xiyi (18)

On the other hand, a moment estimator of δ (Hosking, 1985) can also be
obtained as the solution of the following equation:

1
δ
e

1
δ Ei

(
1
δ

)
= 1 − ρ (19)

Thus, the δ parameter has a close relationship with the classical correlation
coefficient that stands as:

ρ =
e

1
δ

δ
− E(−δ−1) − 1 (20)

Where E is the well-known exponential integral. So, the correlation parameter
is given by:

ρ = −1 +

∞∫

0

e−ydy

1 + δy
(21)

When δ = 0, the correlation parameter ρ is equal to zero and we have a model
where the random variables are independent and the bivariate density splits
into the product of its two marginal densities

f (x, y) = fx(x)fy(y)

When δ = 1, the association parameter ρ is equal to -0.4036 and reaches its
lower limit. So, this model is only suitable for representing a joint density of
two correlated Gumbel distributed variables whose correlation parameter takes
values in −0.4 ≤ ρ ≤ 0 (Tiago, 1961)
D) Misspecification Tests
In order to ensure the statistical validity of our model assumptions in relation
to the real data, we can define some potential misspecification tests for the
Gumbel regression model. The set of tests we discuss will allow us to ensure
that there are no departures from the underlying assumptions of the Gumbel
model while working with real data (Spanos, 2006; Wang, 2005).
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The potential misspecification tests that can be applied to the regression
model can be based on the following F type tests:
a) Additional Non-Linearity in the Conditional Mean
To test for the presence of additional non-linearities in the conditional mean we
can test if α2 = 0 in the following auxiliary regression:

y = α0 + α1ŷ1 + α2ŷ2 + ui (23)

Where ŷ is a vector of the Gumbel model fitted values. Furthermore, we can
also expect that γ1 = 1 if the pre-specified is the correct model. The potential
misspecification tests that can be applied to the regression model can be based
on the following F type tests:
b) Trend in conditional mean
To test for the presence of additional non-linearities, like a linear trend in the
conditional mean, we can test if y2 = 0 in the following regression:

y = γ0 + γ1ŷ + γ2t + u (24)

Where ŷ are the Gumbel model fitted values. Furthermore, we can also expect
that γ1 = 1 if the specified equation is the correct model.
4. Concluding Remarks
Here, we propose to use conditional probability densities as the basis to derive
nonlinear the conditional means that give rise to reliable econometric models,
rather than assuming the standard functional forms of such mean suggested in
the econometrics textbook. We show a procedure to derive econometric models
that capture genuine nonlinear relationships by using empirical suitable condi-
tional probability distributions that give rise to different regression functions.
We illustrate this approach by deriving a regression model that might be useful
to analyze a nonlinear relationship. Specifically, we use a Gumbel conditional
distribution as the basis to derive the nonlinear regression curve that can be
suitable to analyze highly volatile economic data. We show that a non linear
model like the Gumbel regression exhibits changing partial effects of the ex-
planatory variables over the entire distribution of the explained variable, which
is not the case for a normal-linear model.
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