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Abstract 
This paper develops a Monte Cario a lgorithm for pr icing American Options, that has a 
quadratic running time on N, the number of times at which the option can be exercised. The 

computational time is O(A(B /E)d- lE - 2 N 21n(l/8) ln(B /E)), where (3 is the maximum 

price used, E is the precision required, 8 is the probability that 1'._he algorithm fails , and A and 

d depend on the dimension of the probabilistic model used . If .f is the option value obtained, 

[.f - E, .f + E] constitutes a 100(1 - 8)% confidence interval. An explicit relationship 

between these parameters and the running time of the algorithm is also provided. The 

a lgorithm belongs, then, to the class of Fully Polynomial Randomized Approximation Scheme 
far American Options which is defined here and proposed as a criteria for establishing the 

efficiency of such an algorithm. This is the first algorithm for pricing severa! American options 
that provides an explicit relationship between the presicion desired and the running time, and 
that is not exponential in the number of stopping times. It can be applied to American puts, 

American calls and Puts that pay dividends, and to severa! barrier and lookback options. 

R esumen 

En este trabajo se desarrolla un a lgoritmo del tipo Monte Cario, para valuar opciones ame
ricanas que presenta un tiempo de ejecución cuadrático en N, el número de veces en la cual la 
opción puede ser ejercida. El tiempo calculado es O (A (B /E )d- lE - 2 N 2ln(l/ 8)ln(B /E)), 
donde (3 es el máximo precio ut ilizado, E es la precisión requerida, 8 es la probabilidad de que el 

algoritmo no funcione, y A y d dependen de la dimensión del modelo probabilístico utilizado. 

Si .f es el valor de la opción obtenido, [.{ - E, .f +E] representa un intervalo de confianza 

de 100(1 - 8) %. Una relación explícita entre estos parámetros y el algoritmo a través del 
tiempo también se obtienen. E l algoritmo pertenece, entonces a la clase de Esquemas de 

AproximaC'iones Aleatorias Completamente Pohnomiales para Opciones Americanas, la cual 

es definida aquí y es propuesta como un criterio para establecer la eficiencia de dicho algoritmo. 
Este es el primer algoritmo para valuar d iversas opciones americanas que proporciona una 

relación explícita entre la precisión deseada y el tiempo de corrida, y que no es exponencial 
en el número de tiempos de paro. Este algoritmo puede ser aplicado a opciones americanas 

de compra y venta, opciones de venta que pagan dividendos y a opciones con barreras y del 
tipo lookback. 
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l. Introduction 

The valuation of European options has followed a fast pace of development. 
When closed form solutions could not be found, analytic approximations and 
numerical methods were developed. For derivatives with complex path depen
dent payoff functions or with severa! random sources, latt ice methods do not 
have the recombining property (see J arrow and Turnbull , 1916), yielding algo
rithms t hat are often too slow. In such cases Monte Carlo methods became a 
valid alternative (see Boyle et al., 1997), for a lucid survey) . Slower than lattice 
methods in the simpler cases, their rate of approximation is not affected by t he 
increased complexity of the process. 

For the valuation of American options, the development of Monte Carlo 
methods has followed a slower pace. Some experimental successes were reported 
as well. For instance, Boyle et al., (1997) offer a comprehensive account of them. 
An important breakthrough was achieved by Broadie and Glasserman (1997a) , 
where an algorithm is proposed, and it is proved to converge t o the correct 
solution. The algori thm is only efficient when the number of t imes at which 
the option can be exercised is relatively small, since its running time depends 
exponentially on this number. 

In this paper, I propase a theoretical framework to compare various opt ion 
pricing algorit hms. A general Monte Carlo algorithm is also presented, and it 
is shown to converge fast, even if the number of t imes at which the opt ion can 
be exercised is large. The algori t hm is exponential , though, on the dimension 
of the stochast ic model. 

The algorithm is only quadratic on t he number of stopping t imes ( t he num
ber of paths simulated is linearon the number of stopping t imes), allowing for 
arbitrarily good discrete approximat ions . I also provide an explicit relationship 
between the precision desired B /E, t he error probability 8, the number of tjmes 
when exercise is possible N, and the running t ime of the algorithm. This allows 
to construct confidence intervals of a rbitrarily small width and probability of 
error. 

An algorithm that produces confidence intervals for high dimensional op
tions is shown in Broadie and Glasserman (1 997), but the precision still remains 
uncontrolled. Only after running t he algorit hm and looking at the interval 
produced can be decided if the results are sharp. The algorithm depends on 
recursively computing the exercise boundary, i.e . a set that splits t he space of 
states, between those for which t he optima! decision is to exercise and t hose for 
which t he optima! decision is to continue. 

Valuing options by est imat ing the exercise boundary is a very appealing 
idea, it has been used severa! times and with different methodologies. Suc
cessful implementations with Monte Carlo methods can be found in Barraquad 
a nd Martineau (1995); Grant Vora and Weeks (1995); Grant , Vora and Weeks 
(1997); Longstaff and Schwartz (2001 ); Raymar and Zwecher (1997). In the fol
lowing paragraph I offer the first theoretical justification of this methodology. 
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When a discrete model is used to estimate the value of a continuous model, 
two sources of error arise: the discretization error and the discrete model error. 
The former is the difference between the continuous model value and the exact 
discrete model value. The latter is the difference between the exact discrete 
model value and the value obtained by the approximation method being used. 
In the case of lattice methods for complex American options, the discrete model 
error is usually the reason for slow convergence since, at every discrete time, 
the lattice branches out, requiring a computational effort which is exponen
tial on the number of subintervals. In the method proposed here, the discrete 
model error is handled with a realistic computational effort since the running 
time of the algorithm is only quadratic in the number of subintervals. The 
discretization error can then be reduced just by using a enough large number of 
subintervals. 1 will only analyze the discrete model error . Since the discretiza
tion error is independent of the discrete approximation method used, analysis 
done for latt ice a lgorithms can also be applied here. This has been studied for 
sorne American options in Amin and Khana (1994); see Lamberton (1993); see 
Lamberton (1999) and see Leisen (1998). 

Moreover , since 1 can manage quite small subintervals, the discrete model 
is closer to reality than a continuous model. The approximat ion variables can 
be considered as inputs of the problem, and an optima! solution is found under 
such inputs. The length of the time subintervals, dt, represents the length of 
the periods at which the holder of the option checks his position to decide if 
he wants to exercise or not. The precision parameter e represents the accuracy 
required by the pricer of the option. 

2. The theorical framework 

The design and analysis of numerical algorithms has a well established theory 
(see Aho, 1974). The ralationship between the real performance of algorit hms 
and the understanding of the complexity of the problems implemented has prove 
to be very rich in many fields. In pricing European options it is usually possible 
to find a closed form solution or a fast algorithm. For American options, the 
situation is quite different, the possibility of early exercise combined with barrier 
conditions or multidimensional problems create very challenging problems. 

The most important notion in Theoretical Computer Science is that of a 
polynomial time algorithm: an algorithm that has a running time bounded by 
a polynomial applied to the size of the input. For option pricing, the notion of 
input size1 is captured by the parameters: 

i) B, an upper bound of all input and computed prices 

Since numbers are usua!ly coded in computers as binary, the size of the input is the 
logarithm of the numbers used. Number used in financia! applications are not large, thus I 
<leal with them as if they were coded as unary numbers; in such a case the input size equals 
the value of the number. Accordingly, the absolute error used in Aho (1974) becomes t he 

natural measure of accuracy, instead of the weaker relative error often used . 
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ii) E, the precision 

iii) R, the maximum range 

U sually, R = B /E, require more precision than the prices. For clarity, 
we use B /E as the range parameter. For example, if ali the prices involved 
are bounded by 100,000, it is required to have two correct decimals on prices, 
volatilities are kept with four decimals, and no other numbers are used, we have 
that R = max {E /E, 104 } = B/E = 107 . Or, if the algorithm is implemented 
with, say, 32 bit numbers, set R = 232 . 

Assume that we have a particular kind of option and an algorithm whose 
inputs are th~ needed parameters. Let us cal! .f the free arbitrage price of this 
option, and .f ~the price obtained by the algorithm. An exact algorithm is one 
that satisfies .f = .f, a notion that makes little sense if .f is a real number. The 
following definition is more meaningful in the current context. 

We will say that an algorithm is a fully polynomial approximation scheme 
if it also takes as inputs the precision parameters B, E, runs in polynomial time 
in B /E, and satisfies that 

(1) 

To analyze the complexity of Monte Carlo methods for European options pricing 
I adapt, from Karp (1987), the following concept. The algorithm takes as 
input the necessary parameters of the option: the precision parameters B, E, 

and the error probability 8 > O. It constitutes a .fully polynomial randomized 
approximation scheme if it runs in polynomial time B /E, ln(l/ 8), and satisfies 
that 

(2) 

where the probability is taken over the random steps taken by the algorithm. 
Here 8 = 8(E). The absolute error used in the previous definitions allows us to 

say that, in the language of statistics, [J - E, j +E] constitutes a 100(1 - 8)% 
confidence interval. 

For American options, another parameter becomes important: the number 
of times at which the option can be exercised, !et us call it N. A fully polynomial 
randomized approximation scheme far American options is defined, then, asan 
algorithm that also takes as input the times at which exercising is allowed, and 
runs in polynomial time B/E, In (1/8),N, and satisfies (2). The notion of a 
closed form form~da (like "B lack and Scholes") can be included in this context 
as an algorithm that obtains solut ions satisfying (1) in linear time. 
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3. The model 

The option can be exercised at N different times, O :::; t1 < ... < t N- 1 < t N = T, 
in [O, T]. Let dt = Max{tN - tN - 1, . . . , t2 - t1, t1 - to}. For simplicity, I will say 
time k referring to time tk· 

I use the following stochastic model. Let {Sk, k = O, 1, 2, ... , N} be a vector 
valued Markov chain having as state space the vector space S . 

On the other hand, let rk be the continuous rates of interest occurring in 
the interval [tk, tk+ 1], and let 

be the discount factor between times k and Z, k < l; the rates can be state 
dependent, which in turns become part of the state variables . 

Let hk (s) be the payoff function if the option is exercised at time k, in 
state s. Let Gk(s) be the random variable that gives the time k value of the 
option under a random path that starts at time k in state s, if provided the 
option in not exercised at time k and the optima! policy is used afterwards. Let 
9k ( s) be the value of the option in this case, i. e. 9k (s) = E[G k ( s )], where the 
expectation is taken under the risk free probability measure (see Lamberton 
and Lapeyere, 1997). Let V and M be two numbers such that, Vk, Vs, 

Variance( G k( s)) :::; V. (3) 

(4) 

These :two variables need to be defined in order to control the growth of the 
continuation variable . Existence of the variable V means that the process has 
second moments and existence of M means that the process does not have an 
explosive behavior. 2 Let fk(s) be the option value at time tk, and state s. From 
the theory of optima! stopping time (see Lamberton and Lapeyere, 1997) we 
know that 

In the vector state space F, it is convenient to distinguish between the indicator 
variables (for example, a variable that keeps track of whether a barrier was hit 
or not) and quantitative variables, (like current, average or maximum prices 
of assets). Let us say that F = F1 EB F2, with F 1 the subspace of indicator 
variables, and F 2 the subspace of quantitative variables. To find the exercise 
boundary, every vector of F 1 has to be combined with the vectors of F2. Let 
us cal! A, the number of indicator states, i . e. A = JF1 J. Let d be the dimension 

2 Since we are assuming that all prices are bounded by B, it is enough to take M = 
e B - 1 - B - B 2 /2 . Anyway, M is only used in the proof of convergence; V , on the other 

hand , is one of the parameters that determines the running time of the algorithm. 
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of F2, so F2 can be seen as the space [O, B ]d. Consider a fixed vector in F 1, 
we assume that the corresponding exercise boundary forms a d - 1 dimensional 
surface that splits F 2 in two parts: the exercising region and the continuation 
region. 

For s, v E F we say that s ;:::: v if every coordinate of s is greater than or 
equal to the corresponding coordinate of v, and we say that s < v if at least 
one coordinate of s is strictly smaller t hat the corresponding coordinate of v. 
By changing the natural sign of sorne coordinates, the assumption made in the 
previous paragraph can be stated as saying that at every time k there is a 
subset of F, of size A (l/ e )d- l , called the exercise boundary, such that ali of its 
vectors v satisfy that \::Is E F, if s;:::: v then, fk (s) = hk(s) (i.e., it is optimal to 
exercise), and if s < v then ,fk(s) = 9k(s) (i.e., it is optimal not to exercise) . 
This condition is met by many types of options. 

4. The algorithm 

The exercise boundary vectors are computed backwards. At time N, they are 
determined by the strike price and easily computed. To find them at time k , we 
need have stored ali the values of future times, but no time k value is needed. 

By fixing the coordinates corresponding to F 1 . Then, with c-precision 
numbers, missing action the number of vectors in the exercise boundary that 
need to be considered is (B /e )d- l. So, I can fix also the first d - 1 coordinates 
of F2 , there is a unique value for the last coordinate that makes the vector 
be on the exercise boundary. It can be found by the following binary search 
procedure. 

Let x be the fixed part, so we know t hat considering (x, u), with u E [O, B], 
there is a unique value u* such t hat (x, u*) is an exercise boundary vector. Start 
with lower bound O and upper bound B. Let y be the middle point between 
these bounds. We ask the question is y ;:::: u* ?. According to the answer, y 
becomes the new upper or lower bound of u*. Repeat this with the new upper 
and lower bounds until the difference between these two becomes no greater 
than c. 

To answer these questions, as defined before, let gk(x, y) be the value of the 
option if the holder decides not to exercise. Simulate paths P = (Sk, Sk+l, ... ,
SN) starting at Sk = (x, y). For each path, a sample value of Gk(x, y) is 
o btained, let us call it G k ( x, y), or j ust G k. To define it , let us first define, 

T = Min{l E {k + 1, ... , N}} ..l S1 ;:::: v 

for sorne v that belongs to the exercise boundary or 

T = Nif the condition is never met. 

Then, define Gk = Dk,r h(S7 ). In fact, n ofsuch paths are simulated obtaining 

n sample values of Gk(x, y), say Gt with i = 1, ... n. Now, let g = 'ik( x, y) = 
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1 n -i ;:;: 'l:::i=l G k be the estimator of the continüation value. The answer to the 
question is , then: 

i) yes (or y 2:: u* ) if h(x, y) 2:: g (i.e., exercise in state (x, y) if its payoff is 
greater than or equal to the estimated continuation value). 

ii) no (or y < u* ) if h(x, y) < g (i.e., do not exercise in state (x, y) if its 
payoff is smaller than the estimated continuation value). 

This is repeated until the upper and lower bound coincide,i.e., they differ 
by less than €. If for all the questions asked, we obtain correct answers , the 
values of u* obtained are the best approximations to the exact numbers that 
can be obtained with the prescribed precision. In the next section, we analyze 
the probability of obtaining correct answers for all the questions that occur in 
one execution of the algorithm. 

Once we ha ve all the values of u*, the option value at time tk and state 
s, fk(s), is obtained in a similar way. With precision €, Yk(s) is calculated as 
before (just start all paths in state s ), and the estimated option value is 

(5) 

5. Analysis of the algorithm 

Here , we state the theorem that shows that the algorithm is a fully polynomial 
randomized approximation scheme. Moreover, explicit and asymptotically sharp 
bounds for its running time are provided. It is not important to know the exact 
values of all t he constants that a ppear in the t heorem below, since their overall 
effect will be visible when t he algorithm is executed, and they are not big. The 
number of paths simulated per question n, on t he other hand, is decided by 
the programmer in advance, so sharp est imations of the required value can save 
computer time. The proof of the theorem (below) requires the inequalities (6) 
and (8) to be satisfied. 

4V 
n 2:: - 2 [ln(l / 8) + ln (N) + ln (A) + (d - l )ln(B /c) +In [21og2 (B/c)]] . (6) 

€ 

For practica! purposes it is sufficient t hat t he following simplified inequality is 
satisfied. 

4V 
n 2:: - 2 ln (l /8) . 

€ 
(7) 

This can be used to balance the cffect of the precision €, and the confidence 
1 - 8 against the running time of the algorithm. The effect of V responds to 
the variance of t he stochastic process , which can not be reduced. If the running 
time becomes critica!, obtaining sha rper bounds should prove useful. 
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We also need technical upper bounds on the precision parameter E, the 
following will be sufficient: 

(8) 

Theorem: Aswme that equations (3), (4), (6), and (8) are satisfied. Th en, 
with probability 1 - 8, an execution of the algorithm will find the value of the 
option, fo(S), with an error of at most E, in a time no greater than: 

N(N - 1) 4V (B )d-l e 2 A[logz(B/é) ]~ -; X 

([ln(l/8) + ln(N) + ln(A) + ln(21og2 (B/E))]) 

O (A(B /E )d- lE - 2 N 2 ln(l/ 8)ln(B /E)) 

where C is the average time per operation, which depends on the computer 
used, and the implementation, including the generation of random numbers. 

Proof Consider, for now, one single question, and let W be the event that the 
wrong answer is obtained. 

P(W)::; P((g::; y, g >y) U (g >y, g::; y)) 

::; P(l9 ~ gl >E) (9) 

The last inequality is proved in the appendix. Its leading factors can be deduced 
from the central limit theorem, and estimations of the tail probabilities of the 
normal distribution (see, for example, Feller 1973). We need a specific bound 
on the error to obtain an explicit formula for the running time of the algorithm, 
so a large deviation inequality is used instead. 

Let Q be the total number of questions asked in one execution of the 
algorithm, and q the number of questions asked when one exercise boundary 
value is determined. We have that Q = A (B /E )d-l N q . Also, since the initial 
range of possible values is at most (B /E), and a question is asked it gets divided 

by 2, the number of asked questions q must satisfy, !!,/! ::; l. This can be 
accomplished defining q = [log2 (B /é)]. So, the total number of asked questions 
Q satisfies 

(10) 

For j = 1, ... , Q; let Wj be the event that the /h question is wrong, and W the 
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event that at least one question is wrong. Then, 

P(W) ~ P (~ w,) 
Q 

::::; LP(Wj) 
j=l 

::::; Q P(W1) 
- ~2n 

::::; N A(B / é )d-l [log2(B / é )] 2e-;¡v-:-

::::; 8, 

where, the next to last inequality follows from (10) ánd (9), and the last in
equality is true iff inequality (6) is satisfied. 

When, at time k, a question is asked, n paths of length at most N - k have 
to be simulated. So the total number of states that have to be simulated is no 
more than q A (B/é)d-l n (O + 1 + 2 + ··· + N - 1) = qA (B/é)d- l n (N-;l)N _ 

This determines the running time of the algorithm; replacing n by the right
hand side of (6), and q for the mentioned value, the stated bound is obtained. 

Appendix A 

Proof of Inequality (9) 

For simplicity, !et X= Gk(s) - gk(s) be, so that E[X] = O, and !et a 2 be the 
variance of X. According to (3) and ( 4) !et V and M be numbers such that 
V ?': a 2 and E[ex - l - X - X 2 /2] ::::; M. 

Let X j , j = 1, ... , n be n independent replications of X, and !et S = 
X 1 +X2 + · · · +Xn- So (9) is equivalent to P(I ~ I> é) :::=:; 2e -;~n. We have that 

P(I ~ I> é) = P(S > nE) + P(S < -nE). We bound the first term, the second 
terms's bound follows from it. We have that V O :::=:; t :::=:; 1: 
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n 

:S rr E[eXjt]e - net = (E[eXt])ne-net 

j=l 

( E [1 + Xt + ~X2t2 + ~X3t3 + ~X4t4 + .. ·]) n e-net 
2! 3! 4! 

( 1 + ~u2t2 +E [~x3t3 + ~X4t4 + .. ·])n e - net 
2 3! 4! 

< (1 + ~Vt2 +t3E[ex - 1 - X -X 2/2]) n e -net 

:S (1 + ~Vt2 +t3M) n e -net ::; II e -n(et-~Vt2 -t3 M) 

III - n(¿_l.v,S-5-M) - n(.2. - 5-M) =:S e V 2 V V :S e 2V V 

-n_¿(l - ~M) <IV = e 2V V¿; 

I) follows from Markov's inequality. 

] I) follüWS from the Ínequality l +X :S ex, X 2: Ü. 

III) follows taking t = f, which is no greater than 1 from assumption (8). 

IV) follows from (8) . 
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