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Abstract 

The purpose of this paper is to extend the event-study methodology, into a richer dynamic 

environment, by including time-varying parameters. We use the Kalman filter to model pa­

rameters depending on time in a state-space representation of the statistical market model of 

the event-study analysis. We also apply Bayesian inference to updating relevant information, 

and we use information theory to choose the initial distribution of parameters. The proposed 

extension leads to a more robust set-up in appraising the impact of economic, and financia! 

events on the market value of firms. 

Resumen 

El propósito de este trabajo de investigación consiste en extender la metodología de estudios de 

eventos, en un ambiente dinámico más rico, a fin de que se incluyan parámetros dependientes 

del tiempo. Se utiliza el filtro de Kalman para modelar parámetros como función del tiempo, 

en una representación espacio-estado del modelo estadístico de mercado de estudios de eventos. 

Asimismo, se aplica inferencia Bayesiana para actualizar la información relevante y se utiliza 

la teoría de información para elegir la distribución inicial de los parámetros. La extensión 

propuesta conduce a un planteamiento más robusto de la evaluación del impacto que un 

evento económico o financiero tiene sobre el valor de mercado de las empresas. 
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l. Introduction 

Financia! analysts are often concerned with measuring the effect of an economic 
or financia! event on the market value of a specific firm. The most common 
approach to assess the impact of a certain event on the firm performance is the 
event-study analysis, which uses financia! market data. In this methodology, 
the effect of an event will be related to the short-run returns of the assets 
available in the economy. 

The literature in the event-study methodology is large, and applications 
range in a wide variety of events and firms; for instance, mergers, alliances, 
joint ventures, acquisitions, new debt, new stock, splits, payment of dividends, 
new regulation, etcetera. Even though there is not a unique structure of an 
event study, we may summarize the following main steps: 1) define the event of 
interest , 2) determine the event window, 3) select the firm, 4) define the normal 
and abnormal returns, 5) estimate parameters, 6) test for abnormal returns, 
and 7) provide interpretations of the results. Since the pioneer paper of Dolley 
(1933), the level of sophistication of the event-study analysis has dramatically 
increased. Important contribution to the theory, and practice of event studies 
can be found in Myers, and Bakay (1948); Barker (1956); Ashley (1962); Ball, 
and Brown (1968); Brown, and Warner (1985); among others. More recent 
work in the event-study analysis is due to Gilley, Worrel, and El-Jelly (2000) 
in investigating on the influence of environmental regulation on firms; Shelton 
(2000), in developing a framework to derive the demand, and supply of target 
firms in merger; Brady, and Feinberg (2000), in examining stock-price effects 
of the European Union merger control policy; Lambdin (2001), in implement­
ing, and interpreting event studies of regulatory changes; Cowan, and Seargent 
(2001), in examining long-horizon event studies; Wilcox, Chang, and Grover 
(2001), in evaluating the impact of the numerous mergers, and alliances within 
the telecommunications industry. 

Even though much knowledge has been gained about the impact of corpo­
rate news announcements from domestic, and foreign firms in Mexico during 
1993-1995, much still remains to be learned. Needless to say, the Mexican ex­
perience of 1993-1994 (up until the December 1994 financia! debacle) has been 
a central issue for sorne time. Let us highlight sorne of the financia!, economic 
and political events of the Mexican economy between 1993, and 1994. During 
this period Mexico had an intense trade opening combined with a high degree 
of capital mobility. At the same time, the government built up a large debt 
relying on a privatization process, and a stabilization program. The govern­
ment predetermined the rate of devaluation as a nominal anchor to stabilize 
inflation. There were severa! slight modifications to the original exchange-rate 
policy, including a mild increase in the rate of devaluation, and the adoption of 
an adjustable band that was gradually widened keeping constant the lower limit. 
During 1993-1994, a climate of political uncertainty was developed as a result 
of the following events: the Zapatista guerrilla uprising in Chiapas, the assas­
sination of a presidential candidate, a weak "Pacto", a slowdown in exports, 
recommendations from specialists to devaluate in order to ease an overvalued 
currency, an increase in the interest of US government bonds, and approaching 
elections. In 1994, Mexico ran its worst trade deficit of the century. By the be­
ginning of 1995, Mexico had abandoned the adjustable band sy tem, and shifted 
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to a managed floating exchange-rate. As a consequence, several corporate news 
announcements from domestic, and foreign firms in Mexico were carried out 
( mergers, acquisitions, and joint ventures). Sin ce then, various event studies 
have been developed to evaluate the impacts on the market firms (see Dubcov­
sky, and García, 1996; and Bhattacharya, Daouk, and Kehr, 2000). However, in 
most of the findings, there are contrasting results which may be dueto modeling 
with time-independent parameters. 

The growing economic importance of Latin American emerging markets, 
characterized by singular in~titutional, and regulatory frameworks , provides an 
interesting environment to evaluate the effects of financia!, and economic events 
on the market value of firms. These markets exhibit high (expected) returns 
as well as high volatility, and little is known about the short and long-term 
effects of such effects. Even though a time-varying parameter formulation of the 
event-study methodology seems to be more realistic, there is no attempt in the 
existing literature to extend such a methodology in this direction. In this paper, 
we extend the event-study methodology into a richer dynamic environment by 
including time-varying parameters. Under the Bayesian framework, useful to 
update relevant information in a sequential learning mechanism, we use the 
Kalman filter to consider time dependent parameters to measure the effect of 
an economic or financia! event on the market value of firms. In this context, we 
choose the initial distribution by using an information theory framework. 

The Kalman Filter (KF) introduced by Kalman (1960); Kalman, and Buey 
(1961); and independently by Swerling (1959), and Stratonovich (1960), has 
been successfully used in economics, and finance . Sorne of its numerous ap­
plications in these fields can be appreciated in Athans (1974); Burmeister and 
Wall (1982); Burmeister, Wall, and Hamilton (1986); Sargent (1989); Ba§ar, 
and Salmon (1989); and Venegas-Martínez et al. (1995), and (1999); among 
others. 

Our approach in presenting the KF uses information theory which has 
been extensively applied in economics, and finance. We mention, for instance: 
Theil, Scholes, and Uribe (1965); Theil, and Uribe (1965); Uribe, De Leeuw, 
and Theil (1965) ; Cozzolino, and Zahne1 (1973); Akaike (1981); Kapur (1990); 
Venegas-Martínez (1990), (1990a) , (1990b), and (1993); and Venegas-Martínez 
et al. (1995), and (1999). We start off the recursive procedure of the KF 
by determining, via information theory, an estimator of the in~ial distribution 
when there is information in terms of moments, and theft we use Bayesian 
inference to state the updating process of the KF. We think that under this 
framework the presentation is more attractive to financia! analysts. It is worth 
pointing out that our approach to obtain the KF is simpler than those from 
Ho, and Lee (1964); and Meinhold, and Singpurwalla (1983). 

The structure of this paper is as follows. In the next section, we briefly 
review the state-space models. In section 3, we outline the relationship between 
the KF with both information theory, and Bayesian inference. In section 4, we 
present the most popular statistical models for measuring normal returns . In 
section 5, we extend the event-study analysis by including parameters that 
change with time. In section 6, we provide a discussion about Kalman filtering, 
and normal and abnormal returns. Finally, in section 7, we give conclusions, 
acknowledge limitations, and make suggestions for further research. 
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2. The Kalman Filter 

In this section, we briefiy introduce the state-space representation, the mea­
surement and state equat ions of a dynamic system. We fo cus our attention in 
the multivariate case. In what follows all vectors, and matrices are assumed to 
be of consistent dimensions. 

2.1 The State-Space Representation 

Let Y1 , Y2 , ... , Yt be a set of indirect measurements from a polling system or a 
sample survey of an unobserved state variable /3t. The objective is to make 
inferences about f3t· We may think of Yt, and f3t as either scalars or vectors 
with dimensions which may be the same or different. The relat ionship between 
Yt , and f3t is specified by the measurement equat ion, sometimes also called the 
observation equation 

(2.1) 

where Xt is a matrix of known parameters, and é t is the observation error dis­
tributed as N(O, ~€,), wit h ~€. known. Since the variance changes over time we 
have, in general, a heteroscedastic error model. Notice that the main difference 
between the measurement equation, and the conventional linear model is tha t 
in the former, the coefficient f3t changes with time. 

T he most popular dynamic extension of the error term in the conventional 
linear model states that 

{ 

Yt = Xt/3 + et, 

et = Zet- 1 + TJt, 
(2.2) 

where Z is a matrix of known parameters, and T/t is distributed as N(O , ~11,). 
Notice that f3 and ~11, are t ime invariant . The KF will not be concerned with 
the dynamics of the error term, et, as in (2.2), but instead with the dynamics 
of the state variable, /Jt , in (2.1) . This being the other essent ial difference from 
t he conventional linear model. We suppose that the dynamic behavior of the 
state variable /Jt is driven by a first order autoregressive process, that is, 

f3t = µ t - 1 + Ztf3t-l + T/t - 1, 

where the drift µt - l is a vector of exogenous or predetermined variables, Zt is 
a matrix of known parameters , and T/ t ""' N(O , ~11,) , with ~11, known. Or even 
more generally, 

f3t = µt - 1 + Ztf3t - l + L tUt- 1 + T/t- 1, (2 .3) 

where Lt is a known matrix that relates the control 1nputs, Ut _ 1, to f3t· Equa­
tions (2. 1) and (2.3) are known in the literature as the state-space representation 
of the dynamics of f3t · Throughout t he paper, we shall assume t hat /Jo, et a nd 
TJt are independent random vectors , and L t = O. We might state nonlinear 
versions of (2.1) and (2.3), but this would not make any esscntial differences in 
the analysis. 

3. Kalman Filtering, Information Theory, and Bayes ian Inference 

In order to present t he KF in a simple way, we first out line the principie of 
maximum entropy, and the Bayesian approach to statistical inference. The 
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former will provide an estimator for the initial prior distribution to start off 
t he sequential procedure of the KF, and the latter will provide the recursive 
updating of information of the KF. 

The principle of maximun entropy, first introduced by Jaynes (1957), pro­
vides a general method of inference about an unknown density, p(/30), when 
there is information about p(/30) in terms of moments. The principle states 
that among all compatible distributions with the available information, we 
should choose an estímate for 7r(/3o), p(/30), the one with the greatest entropy 
- J~"" log(7r(/3o))7r(/3o)df3o. 

Suppose that at time t = O, the available information is given by (30 and 
~0 , the mean and variance of /30, respectively. We may then use the principle 
of maximum entropy to find an estímate, 7r(/30 ), of the prior distribution of (30 
that takes into account the given information. The problem is as follows 

Maximize - ¡: log(7r(/3o))7r(/3o)d/3o, 

subject to 

¡: 7r(/3o)d/3o = 1, 

¡: /3o7r(/3o)d/3o = fio, 

¡: (/30 - 'iio)(/30 - 'iiof 7r(/3o)d/3o =~o. 
The first order condition of the above calculus of variations problem of maxi­
mum entropy is given by 

T ~ T ~ 

7r(/3o) ex exp{A +A /30 + (/30 - /30) L(/30 - /30)}, (3.1) 

where ,\ is a scalar, A is a vector, L is a symmetric matrix and the superindex 
T means the transpose operation. By substituting (3.1) in the constraints, we 

can show that (30 ~ N('iio, ~o) (see, Venegas-Martínez (1990), and Venegas­
Martínez et al.(1995)). 

Suppose now that, at time t, we wish to make inferences about the condi­
tional state variable fh = f3t!It, where It = {Y1, Y2, .. ., Yt- d· In the Bayesian 
approach is to be assumed that there exists a prior density, 7r(Bt), describing 
initial information. Once a prior has been prescribed, the information provided 
by the measurement Yt, with density p(Yt!Bt), is used to modify the initial 
knowledge, as expressed by 7r(Bt), via Bayes' theorem to obtain a posterior 
distribution of Bt, namely 

(3.2) 

The normalized posterior distribution is then used to make inferences about 
Bt. We are now in a position to state the recursive updating procedure of the 
KF. At time t = O, the maximum entropy estimator for the initial distribution, 
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N(Íio, ~o), describes the initial knowledge of the system. Proceeding induc­
tively, at time t, "5t- l and ~t- l become available information, and therefore 
prior knowledge at time t is represented by 

(3.3) 

where 
~ T 

Mt = Zt:Et-1Zt + :Er¡,_1 · (3.4) 

The sampling model (or likelihood function) is determined by 

(3.5) 

The posterior distribution is then obtained by substituting both (3.3) and (3.5) 
in (3.2), so 

Noting that p(fh) is a natural conjugate prior. We may complete the squares, 
which is a standard technique in Bayesian inference, to get 

where 
Kt = MtX'f (:E",+ XtMtX'f)- 1. 

This, of course, means that 

{ 

~t = Zt°5t-l + Kt(Yt - XtZt°5t-i), 

:Et= Mt - KtXtMt. 

(3.6) 

(3.7) 

We then proceed with the next iteration. Equations (3.4), (3.6), and (3.7) are 
known in the literature as the KF. We warn the reader not to confuse the KF 
with the state-space representation given in (2.1) and (2.3). 

By means of various vector-matrix manipulations, the matrix Kt in (3.6) 
can be put into a number of equivalent forms. An alternative formulation, that 
we shall use in the next section, is given by 

(3.8) 

To verify (3.8), we simply premultiply the right-hand side of (3.6) by a suitable 
choice of "identity" matrix as follows' 

Kt = (x'f:E;,1 Xt + Mt- l)-1(x'f:E;,1xt + Mt- 1)Mtx'f(:E f; , + XtMtx'f) - 1 

= (X'f:E;,1 Xt + Mt-1)-1 x'f:E;,1(:Ef;, + XtMtX'f)(:E f; , + XtMtx'f)- 1 

= (X'f:E;,1 Xt + Mt-1)-1 x'f:E;,1. 
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3.1 Relationship with Generalized Least Squares 

In this section, we briefiy discuss the KF relationship with the Generalized 
Least Squares methodology for both the classical and Bayesian approaches. We 
suppose that (31 = f32 = · · · = f3t, Z1 = I, and ~71, does not appear. By simple 
computations involving the KF with (3.8), we find 

°Íi1 = °Íio + K1(Y1 - X1°Íio) 
= "íio + (xf~;/x1 + ~ü 1 )- 1 xf~;/(Y1 - x1"íio) 
= (xf~;/x1 + ~ü 1 )- 1 [(xf~;/x1 + ~ü 1 )°Íio + xf~;/(Y1 - X1°Íio)] 
= (xf~;/x1 + ~ü 1 ) - 1 (~ü 1 °Íio + xf~;;_1 Y1), 

(3 .9) 
which is the posterior estimate for f31, when initial information from a natural 
conjugate prior is available. Notice that when ~01 vanishes (i .e., when the 
prior is not informa ti ve), the estima te is 

(3.10) 

which is the Generalized Least Squares estimate of (31 . 

4. Statistical Models of Event Studies 

There are severa! models available in the literature to calculate the normal re­
turn of a given stock. These approaches can be grouped into two types: statis­
tical and economic. In the former, there are statistical assumptions concerning 
the behavior of the asset returns. While, in the latter, there are assumptions 
on the behavior both economic agents, and asset returns. In particular, in the 
statistical type it is customary to assume that asset returns are distributed 
multivariate normal independently. A number of the statistical models have 
been proposed for measuring normal returns, we briefiy review two of the most 
popular statistical models in event-studies. 

4.1 The Constant-Mean-Return Model 

The constant-mean-return framework is very popular in event-study analysis. 
Although the above framework is one of the models, it turns out that the 
obtained results are similar to those from more sophisticated models (see, for 
instance, Brown and Warner, 1985). Let µi be the mean return for asset i. Let 
us define 

( 4.1) 

where Rit is the return in period t on the security i, and cit is white noise for 
each i , that is to say, 

Var[cit] = u'f. ( 4.2) 

Plainly, the (unconditional) mean, and variance of Rit are given by 

Var[Rit] = u'f. (4.3) 
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Finally, it is importa nt to point out that with monthly data, the model can be 
applied to real returns or excess returns as well as nominal returns. 

4.2 Market Model 

The market model relates the return of any given security to the return of t he 
market portafolio. The model's linear specification follows from the assumed 
joint normality of the asset returns. Especifically, for any stock i, we have 

( 4.4) 

where Eit is taken as in ( 4. 2) . Here, Rmt is the return in period ton t he market 
portafolio. The coefficients o:i, /i, and a[ are the relevant parameters of the 
model. 

5. Kalman Filtering in Event Studies 
The market model improves in several aspects the constant-mean-return model. 
For instance, by removing the portion of the return that is related to variat ions 
in the asset return, the variance of the abnormal return is reduced. This can 
lead to increased ability to detect event effects. The advantages from using the 
market model will depend upon the R 2 of the market-model regression. The 
higher the R 2 , the greater t he variance reduct ion of t he abnormal return, and 
the larger the gain. 

Let Ri1 , R i2, ... , Rit be a set of returns of the i-th asset , the relationship be­
tween the return , Rit, and the time-varying coefficients , O:it and lit, is specified 
by t he following measurement or observation equation 

(5.1) 

where Rmt (1, Rmt), /3it = (o:it, /it)T, and Eit is the observation error dis­
tributed as N(O, al) , with ai known. Notice that the main difference between 
the measurement equation and the market model is that, in the former, the 
vector of coefficients /3it changes with time. Furthermore, we suppose that /3it 
is driven by a first order autoregressive process , that is 

/3it = Zit/3i,t- 1 + 7li ,t - 1, (5.2) 

where Zt is a known matrix, and 7lt rv N(O, E'l) , with E'l known. The objective 
is to make inferences about f3it· In what follows , we will assume, as customary, 
that /3i0, Eit, and 7lit are stochastically independent. 

Suppose now that, at time t = O, initial information is given by /3i0 and 
Eio, the mean and the variance-covariance matrix of /3i0, respectively. That is, 
initia l information, I, is given by 

1-: 7r (/3io) d /3w = 1, 

1-: /3w7r( /3w)d/3w = 'iio, 

1
00 

~ ~ T ~ 

_

00 

(/3i0 - /3i0)(/3w - /3w) 7r(/3o )d /3io = Ew. 

(5.3) 
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In this case, the initial prior that maximizes ent ropy is 

where Aio , Ai1, and Ai2 are the Lagrange Multipliers associated with the con­
straints. 

Suppose that, at time t, we wish to make inferences about the conditional 
state variable (}it = .Bitllit, where lit= {Ri1, Ri2 , ... , Ri,t- d· To obtain a poste­
rior distribution of (}it, the information provided by the measurement Rito with 
density f (Ritl&it), is used to modify the initial knowledge in 7í(&t) according to 
Bayes' theorem: 

(5.5) 

We now are in a position to state the Bayesian recursive updating procedure 
of the KF. To start off the KF procedure, we substitute (5.4) in (5.3), so the 

initial prior, at time t = O, is given by N(ÍiiO, ~iO), which des~ribes the ~itial 
knowledge of the system. Proceeding inductively, at time t, .Bi,t-1 and I:i,t-1 
become additional information, and therefore the prior, at time t , is given by 

(5.6) 

where 
~ T 

Mit = Zit2:i,t-1Zit + 2:'7. (5.7) 

The sampling model (or likelihood function) is determined by 

(5.8) 

The posterior distribution, at time t, is then obtained by substituting both 
(5.6) , and (5.7) in (5.5), so 

- { 1 2 2 f(OitlRit) ex exp - 2[(Rmt.8t - Rit) (]"; 
~ T -1 ~ 

+(.Bit - Zit,Bi,t-1) Mit (,Bit - Zit,Bi,t-1)]}. 

Noting that 7í(&it) is a natural conjugate prior, it follows that 

where 
(5.9) 
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This, of course, means that 

{ 

~it ~ zitii,t - 1 +_Kt(Rit - RmtZtii ,t- 1), 

~it - Mit - KitRmtMit· 
(5.10) 

We then proceed with the next itcration. Equations (5.7), (5.9), and (5.10) are 
known in the literature as the KF. 

6. Kalman Filtering, Event Window, and Abnormal Returns 

After defining the event of interest , and identifying the period over which the 
stock prices of the firms involved in this event will be examined, to assess 
the impact of the event we requiere a measure of the abnormal return. The 
abnormal return is the actual ex post return of the stock over the event window 
minus the normal return of the firm over the event window. Hence, thc normal 
return is defined as the return that would be expected if the event did not take 
place. Thus, for firm i, and event date t, we have that 

(6.1) 

where 
(6.2) 

and 
/Jit = Zit/Ji ,t- 1 + T/i,t-1 (6.3) 

defines the abnormal returns at time t. Finally, estimators of the time-varying 
parameters satisfy 

(6.4) 

7. On the Null Hypothesis 

So far, we have emphasized on a single null hypothesis H o: that the given 
event has no impact on the behavior of stock returns. Under Ho either a mean 
effect or a variance effect represents a violation. However, in many cases we 
may be interested in testing only for a mean effect. In these cases, we need to 
extend H 0 to allow for changing variances. To achieve this goal, we have to 
eliminate the dependence on past security returns in estimating the variance of 
the agregated cumulative abnormal returns. In such a case, we use the cross 
section of cumulative abnormal returns to form an estimator of the variance, 
which is best applied when using the model 

{ 
Rit =Rmt/Jit + éit, 

/Jit = Zit/Ji ,t-1 + T/i ,t-1 , 

to measure abnormal security returns . 

Variance estimation by using cross-sectional ai,aalysis can be applied to 
both the average cumulative abnormal return, CAR( T1 , T2 ; i i t ), and the average 
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standardized cumula ti ve abnormal return, se AR ( Tl' T2i "iiit)· In these cases, 
estimators of the variances are given, respectively, by 

(7.1) 
and 

(7.2) 
For thcse estimators of the variances to be consistent, we require the abnormal 
returns to be uncorrelated in the cross-section. It is important to point out 
that an absence of clustering is enough for this requirement. Notice also that 
cross-sectional homoscedasticity is not required for consistency. 

8. Summary and Conclusions 

Even though the event-study methodology has bcen widely used to study a 
variety of firms and events, it has been missing an extension considering time­
varying parametcrs. In this research, we have extended the event-study method­
ology, into a richer dynamic environment, by including parameters that change 
over time. Our proposal, which uses the Kalman Filter, leads to a more robust 
set-up to measure the impact of economic, and financia! events on the market 
value of firms. Needless to say, it remains to be done sorne empírica! work on 
using our methodology. To do so, we will devote ourselves to elaborate sorne 
empírica! analysis for the Mexican case in severa! coming papers. Our theoret­
ical framework encourages, and suggests further research in severa! directions. 
For instance, it is crucial to investigate how the effects display long-run trends 
that affect the market value of the firms. 
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