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In the Black-Scholes-Merton option pricing formulas the coefficients that multiply the ma.in 

variables ( the price of the underlying and the strike price) are equal to sorne "Greeks" (partial 

derivatives of the price with respect to the main variables). In this paper we prove that 

this property is not only true for a log-normal distribution, but it is also satisfied by any 

distribution that comply with sorne natural conditions and by sorne exotic options. These 

identities are derived from a new integral representation of the Greeks. This representation 

a llows to derive Greeks in an easy and systematic way simplifying the long computa tion of 

partial derivatives traditionally involved in obtaining them. When computing Greeks, these 

results can be applied to simplify the derivation of closed form expressions, to speed up 

numerical methods , and to obtain better accuracy. 

Resumen 

En la fórmula de valuación de opciones Black-Scholes-Merton, los coeficientes que multiplican 

a las principales variables (el precio del subyacente y el precio de ejercicio) son iguales a 

a lgunas "Griegas" (derivadas parciales del precio con respecto a las principales variables). 

En este trabajo probamos que esta propiedad no es sólo verdadera para una distribución 

log-normal, sino también se satisface para cualquier distribución que cumpla con a lgunas 

condiciones naturales y para a lgunas opciones exóticas. Estas identidades son derivadas a 

partir de una nueva representación integral de las Griegas. Esta representación permite 

determinar las Griegas en una forma sencilla y sistemática simplificando las complejidades 

computacionales y matemáticas tradicionalmente relacionadas en estos calculos. Cuando 

calculamos las griegas, estos resultados pueden ser aplicados para simplificar la derivación de 

expresiones cerradas, acelerar los métodos numéricos y obtener mejores ajustes. 
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l. lntroduction 

We will use the following standard notation: S(t) or St denote the price of 
a financia! asset at time t E [O, T], q is the continuously compounded rate of 
dividends that a holder of this asset receives, C(t) denotes the time t value of a 
call option whose payoff function at expiration T is (S(T) - K) + = max{S(T) ­
K, O}, where K is the exercise price. Similarly, P(t) denotes the time t value of 
a put option whose payoff function at expiration T is (K - S(T))+ = max{K -
S(T), O} . More generally, V(t) denotes the time t value of a closed portfolio 
(i.e ., such that no value is added or ta'ken from it). Also, r is the continuously 
compounded risk free rate of interest. 

The theory of option pricing (see Karatzas, l. and S. Shreve (1998) or 
Lamberton, D. and B. Lapeyere (1997)) establishes that in an arbitrage free 
market, under sorne standard assumptions: 

V(t) = Et[V(T)e - r(T- t)] (1) 

for a given probability distribution and family of sigma algebras Ft, O :::; t :::; T. 
Where, Et and Prt denote the expectation and probabilities taken with this 
distribution, and conditioning on Ft. We will use the usual name Risk Neutral 
Valuation for prices based on formula (1). 

Many closed form formulas for European options can be presented as: 

C(t) = csS(t) + cKK, 

P(t) = PKK + psS(t) . 

(2) 

(3) 

We will refer to es, e K, p s and p K as the coefficients of the corresponding for­
mula. This is a slight abuse of notation since they themselves depend on S ( t) 
and K . One single coefficient is undefined, but the paires , CK is defined as two 
values that substituted in equation (2) give the value of the call (similarly for 
puts). 

Let A = { w : S(T, w) 2: K}, let A e be its complement, and let lA and lAc 

be their characteristic functions . Then, these coefficients admit the following 
representation: 

- [S(T)e - r(T- t) ] 
es - Et S ( t) 1 A , (4) 

(5) 

- - [S(T)e - r(T- t) ] 
PS - Et S(O) lA , (6) 

PK = Et [e - r(T- t)1A]. (7) 

If interest rates are assumed to be deterministic (a frequently used approxi­
mation for derivatives on stock and foreign exchange markets) . formulas (5) 
and (7) can be expressed as - e-r(T- t)prt[A] and e- r(T- t)Prt[ Acj . vVe keep the 
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more general expressions because they are also valid when interest rates are 
stochastic. 

These identities hold under any model where derivatives can be valued 
using the Risk Neutral Universe (i.e. , where equation (1) is satisfied). Many 
variations of them are well known, sorne applications and generalizations can 
be found in Crouhy, M. et al. (2000) , Geman, H. et al. (1995) and Gerber, 
H. and E . Shiu (1996). Since they are crucial for the results presented here , a 
proof is provided in appendix A. 

Consider, now, the Black-Scholes-Merton model (see Black, F. and M. 
Scholes (1973) and Merton, R. (1973)). We will refer to it as B-S-M. Finding 
the expectations (4), (5) , (6) and (7) under this model the B-S-M equations are 
obtained: 

C(t) = S(t) e - q(T -t )N(d1) - K e- r(T- t)N(d2) , 

P(t) = K e- r(T- t) N( - d2) - S(t)e - q(T- t ) N( - d1), 

ln( S(t)) + (r - q + u
2 
)(T - t) d _ K 2 

1 
- (J"J(T - t) ' 

d2 = d1 - O"J(T - t). 

(8) 

(9) 

Where N (.) is the cumula ti ve distribution function of the standard normal 
distribution. 

Consider now t:,. catt(t) = aC(t) / 8S(t) . In the B-S-M model, after a labori­
ous differentiation of formula (8) it turns out that /::,. call = e- q(T- t)N(d1) , i.e. 
/::,. call equals the coeffi cient of the price. We prove here that the identity between 
/::,. call and the coefficient es ( or the corresponding expectation) holds under any 
distribution that satisfies a very natural condition. Similar results are shown 
for puts , sorne exotic options, and other Greeks. 

S(T ) - r ( T - t) 

The key property is that, while the random variable ~(t) 

on O" and T, it is independent from the values of S(t), K and r. 
conditions required are: 

S(T)e- r(T-t) 
- --- - is independent of St , 

St 

S(T) e- r(T- t) 
- - - -- is independent of K, 

St 

S(T)e - r(T- t) 
- --- - is independent of r. 

St 

depends 

So, the 

(10) 

(11) 

(12) 

Condition (10) only says that we are interested in models of S(T) that con­
sider proportional growth rather than absolute growth, a necessary condition 
to model financia! assets. Condition (11) says that the asset growth is in­
dependent of the strike price of an option written on it. This is satisfied in 
standard options where the strike price is fixed . Condition (12) says that, once 
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discounted , the asset price is independent of the interest rates. This is true in 
the Risk Neutral Universe (see Hull, J. (2000)) . 

These conditions are applied independently of each other to obtain equal­
ities between Greeks and expectations. The fact t hat Greeks equal the cor­
responding coeffi.cients has often been cited as a rule of thumb to remember 
the Greeks. This rule get s fully explained here. Its explanation is provided by 
lemma 1, below, and the fact that the first summand in the left hand si de of 
the lemma vanishes for most financial derivatives. 

The equality between coeffi.cients and Greeks follows from a new integral 
representation of derivatives prices (proposition 1, below) . Even though it is 
simple to obtain, it is very powerful. It allows to derive Greeks in an easy and 
systematic way simplifying the long computation of partial derivatives tradi­
t ionally involved in obtaining them. 

In section 2, t he main results are stated. Section 3 provides sorne technical 
lemmas needed to obtain these results. In section 4, t he results are proven. 

2. Greeks as Expectations 

In this section we prove the identities between Íl call , K,call , and Peal! (derivatives 
of the call price wit h respect to St, K , and r) and the corresponding expecta­
t ions. We need only to assume conditions (10) , (11) and (12) respectively. We 
also st ate similar identities for Ílput , K,put, and Pput · To prove them the same 
procedure, with minor modifications, can be followed. Alternatively, the results 
for puts can be deduced from the results for calls using the put-call parity. 

Theorem 1 

• If condition (10) is satisfied , t hen 

• If condition (11) is satisfied , then 

K, call = - Et[e - r(T - t) l A], 

E [ - r (T - t) l ] K,put = t .e A c . 

• If condit ion (12) is satisfied , t hen 

Pcall = (T - t) K Et[e - r(T- t) lA], 

Pput = - (T - t)KEt[e - r(T- t )lAc] . 

Using the representation of coeffi.cients as expectations (equations (4), (5) , (6) 
and (7) ), this theorem can also be expressed in terms of the coeffi.cients . Ob-
taining, thus, .. 
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Corollary 1 

• If conditions (10) and (11) are satisfied, then (2) is satisfied with es = !:lcau 
and eK = Kcall and (3) is satisfied with PS = f:lput and PK = Kput· 

• If conditions (10) and (12) are satisfied, then (2) is satisfied with es = 
!:l call and eK = - PcallK - 1 (T - t) - 1 (3) is satisfied with PS = f:l put and 
PK = - PputK - l(T - t) - 1. 

There is a simple and general probabilistic expression for f call = 82C(t) / 8S(t) 2 

and for fput = 82P(t) / 8S(t)2
: 

Theorem 2 

• If condition (10) is satisfied, then 

K e - r(T- t) 
f call = St fsr(K) , 

K e- r(T- t) 
f put = f Sr (K). 

St 

Where, as usual, f x ( x) denotes the density function of the random variable 
X applied to x. Note that under the B-8-M model, using the corresponding 
log-normal distribution for f Sr, and after sorne algebraic manipulations, the 
usual expression for r is obtained (see Wilmott, P (2000) ). These results will 
be derived from the following representation of the price of a derivative. Its 
proof is provided in appendix B. 

Proposition 1 

Let 

then 

K e - r(T- t) S(T) e - r(T - t) 
Yo = and Y = --- - -

St St ' 

C(t) = f
00 

( Sty - K e- r(T- t)) dFy(y ), 
}Yo 
{yº 

P(t) = }_
00 

(s tY - K e - r(T- t)) dFy(y). 

(13) 

(14) 

Where Fx(x ) denotes the cumulative distribution function of the random vari­
able X, applied to x, and conditioning on Ft ( i. e. assuming that St is known). 

3. Calculus Lemmas 

To compute !:lcall, we need to differentiate equation (13). Permuting the deriva­
tive and the integral is not possible because y0 depends on S0 , K, and r . In 
this section we develop results that take care of this obstacle. For this, we will 
use the following Lemma (see Haaser , N. et al. (1964)). 

Lemma 1 

Let f (x , y) be a continuous function on [a 1 , a 2] x [,81 , ,82] such that Of~~, y) 
exists and is continuous. Let a and b be two differentiable functions on 
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[,81, f32] such that for every y E [,61, ,62], a(y) E [a1, 0:2] and b(y) E [a1 , 0:2]. 
Then, 

a (t(y) f(x, y)) 
1

b(y) a(!( )) 
a(y~ dx = x,y dx + f(b(y) , y)b'(y) - f(a(y) ,y)a'(y). 

Y a(y) ay 
(15) 

In the applications, after a change of variables, b(y) will be the strike price of 
a financia! derivative and f the payoff of a derivative. Also, only one of the 
integration limits will depend on y. In this case the second and third term of 
the right hand side of equation (15) vanish. For ease of reference we stat e this 
simplified result. 

Lemma 2 

Assume t hat a , b and f satisfy the conditions of Lemma l. If a is constant 
and f(b(y),y) = O, then 

a 1:(y) f( x, y) dx = 1b(y) af(x , y) dx . 

ay a ay 
(16) 

If bis constant and f (a(y) , y) = O, then 

a 1:(y) j (X' y) dx = 1b aj (X' y) dx. 
ay a(y) ay 

(17) 

4. Proofs of the Theorems 

Proof of Theorem l. We proceed now to compute .Ó. call differentiating the 
integral of (13), applying lemma 2, and using condition (10): 

t:. _ ac(t) 
cal! - aSt 

= ~ (1 00
(Sty - Ke - r(T- t))dFy(y)) 

aSt Yo 

1
00 a (Sty - K e- r(T- t) ) 

= as dFy(y) 
Yo t 

= 1 00 ydFy (y) 
Yo 

(18) 

l oo ( Sre - r(T- t) ) 
= dFsT(Sr) 

K St 

(
Sre - r(T- t) ) 

= Et lA . 
St 

Similarly, we can obtain "-call assuming (11). 
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Assuming (12), we can also obtain Pcall · 

8C ( t) 
P call = ----¡¡:;---

= ~ ( r =(Sty - K e- r(T- t)) dFy(y) 
ar }Yo 

1

00 a(Sty - K e- r(T- t)) 
= 

0 
dFy(y) 

Yo r 

= 1 = - (T - t)K e- r(T- t)dFy(y) 
Yo 

= -(T - t)KEt(e - r(T - t)lA) · 

Proof of Theorem 2. During the proof of theorem 1, in equation (18) , we 
obtained the following equality Íl.call = r= ydFy(y ). So 1 

J yo 

r _ oll.calt(t) 
call - 8St 

8 (g: ydFy(y) ) 

8St 

{) (Jyc;: y fy (y )dy) 

8St 

Since we are assuming condition (10), Y is independent of St . The integral of 
the last expression only depends on St through y0 , the limit of integration. So, 
in this case, we can just use the Fundamental Theorem of Calculus to obtain: 

1 In the proof, we are assuming that Sr follows a continuous distribution. The proof can 

also be done for a discrete distribution and is a lmost identical. 



310 A. D. Fundia and F. Venegas Martínez / Probabilistic Greeks 

dyo 
fcall = YoÍY(Yo) dSt 

K e- r(T- t) 
= fsr (K). 

St 

The last equality follows from the definition of y0 and from the formula of 
change of variables for density functions. 

5. Concluding Remarks 

In this paper, we have proved that the partial derivatives of the option premium 
with respect to the price of the underlying and the strike price, main variables 
of Black-Scholes-Merton option pricing formulas , do not need the assumption 
of lag-normal distribution to compute them, but they are also satisfied by any 
distribution that comply with sorne natural conditions. Then, we suggest a new 
way to derive Greeks from a new integral representation. This proposal follows 
two theorems, proven in the section 4, that allow us to reduce the computational 
time to obtain them. Finally, we show that our results fullfi.11 the features of 
the original Greeks. 

Appendices 

A. Coefficients as Expectations 

Proof of equalit ies (4), (5), (6), and (7). To apply (1), we need a closed portfo­
lios, so if S ( t) is the price of an asset that pays dividends, !et S ( t) = S ( t )eªt be 
the portfolio resulting from reinvesting ali dividends in the asset. Defining also 
K = Keqt , the payofffunction ofthe cal! is (S(T) - K) + = e- qT(s(T) - K) +. 

So the call on S can be treated as a call on S, with strike price K, multiplied by 
a constant. This is the usual method to treat dividends and ali the extensions 
that follow. (See Hull , J. (2000) and Merton, R. (1973)). Then 

C(t) = Et(e - qT(S(T) - K) +e- r(T- t)) 

= Et((S(T) - K) +e- r(T- t)) 

= Et((S(T) - K)e - r(T- t) lA) 

= S(t)E ( S(T)e - r(T- t) 1 ) - KE (e - r(T- t) l ). 
t S(t) A t A 

The results follow from the last expression. 

B. The Integral Representation 

Proof of proposition (1). Starting from equation (1) , we have 
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C(t) = E((S(T) - K)+e-r(r- t)) 

= l= (Sr - K)+ e- r(r- t)dFsr (Sr) 

= l= (Sr - K)e - r(r- t)dFsr(Sr) 

= l= ( St ( Sre:t(r- t)) - K e- r(r- t)) dFsr (Sr) 

= 1= (Sty - K e- r(r- t))dFy(y ). 
Yo 

The last equality follows from a simple change of variables. The proof for the 
put is similar. 
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