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Abstract

Main objective is to quantifying capital requirements of Operational Risk based on Bayesian

inference by using an operational risk advanced measurement model, particularly when his-

torical information is not available for a typical Mexican financial institution. The model

employs a conjugated Poisson-Gamma distribution and feeds from experts interviews infor-

mation so parameters can be measured. Monte Carlo simulations based on an interval for

experts expected value of a loss event were generated from which following results were col-

lected: 1) operational risk value can be gotten with insufficient information at a 95% of

confidence, 2) expected losses tend to increase when experts expected events increase as well,

3) a positive correlation between operational risk and experts expected events exist, 4) fre-

quency and severity of losses are smaller at the beginning and higher as operational risk value

is been approached, then both decrease again. Described results depend highly on assump-

tions model and experts opinion and information available. Methodology proposed stands for

an operational risk advanced measurement, so a specific strategy can be formulated for the

firm to avoid losses and therefore operational risk.

JEL Classification: C11, C16, G19.
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Riesgo operacional medido por Redes Bayesianas con una

distribución conjunta Poisson-Gamma en una

empresa financiera

Resumen

El objetivo es cuantificar requerimientos de capital y riesgo operacional mediante inferencia

bayesiana, mediante un modelo de distribución conjunta Poisson-Gamma alimentado por

información de expertos para una institución financiera mexicana. Simulaciones Monte Carlo

basadas en intervalos del valor esperado del evento de pérdida muestran que: 1) El valor del

riesgo operacional se puede obtener con información insuficiente con 95% de confianza, 2) las

pérdidas esperadas tienden a aumentar cuando los sucesos que esperan los expertos también se

incrementan, 3) hay una correlación positiva entre el riesgo operativo y los eventos esperados

por los expertos, 4) la frecuencia y severidad de las pérdidas son más pequeñas al principio

y luego crecen conforme el valor en riesgo operacional se acerca al óptimo, después ambos

disminuyen nuevamente. Los resultados descritos dependen de los supuestos del modelo aśı
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352 Nueva Época REMEF (The Mexican Journal of Economics and Finance)

como de la opinión de los expertos y la información disponible al interior de la firma. La

metodoloǵıa propuesta proporciona una medición avanzada del riesgo operativo, por lo que

se puede formular una estrategia espećıfica para que una empresa financiera evite pérdidas y

asuma riesgo operacional.

Palabras clave: Análisis bayesiano, Distribuciones Gamma y Poisson, Riesgo operacional.

Clasificación JEL: C11, C16, G19.

1. Introduction

In order to fulfill capital requirements needed in Advanced Measure Models
defined by Basilea II agreements, financial institutions must use internal data,
relevant external information, scenario analysis and factors so that
firms business environment as well as its internal control system improves. Up
to now internal historic data of operational risk losses have been insufficient
to predict future, furthermore, there is not sufficient information to estimate
frequency and severity of losses in a safe way (Chen, et al., 2013). On the
other hand, external data are difficult to obtain due to operational treatment
diversity among financial institutions (Zhou et al., 2014). Examining causes
and effects of losses is relevant when an Operational Risk Analysis is executed.

Scenario analysis can be subjective by itself; however combined with
historical data of operational risk losses it turns into a powerful tool for
estimating this type of risk. There are crucial aspects regarding operational
risk management that can be explored by cause-effect models (Chonawee, et al.,
2006). Bayesian inference has proved to be a worthy technique for combining
incomplete data with expert opinions.

Operational Risk (OR) is defined as potential loss because of fails or
deficiencies in internal controls, errors in processing and loading operations or
information transmission, as well +by adverse administrative and judicial
resolutions, frauds, robbery, technological and legal risk (CUB, 2005). This
definition includes operational and legal risk but excludes reputational risk.
OR is classified as a quantifiable and non-discretionary risk because it cannot
be generated due to taking risk positions.

OR is the eldest of all risks a financial institution might confront, in general
is inherent to all activities where people, process and technological platforms
intervene in, and so is not exclusive of financial activities.

Basilea II document (BIS, 2005) denotes that in order to qualify
for operational risk of capital measurement by an Advanced Measure Models
(AMM) institutions have to prove internal modeling precision, for each entry of
the risk matrix created on eight business lines and seven relevant risks types. If
institutions want to achieve regulatory requirements, modeling must embrace:

• Internal data

• External data

• Scenario analysis

• Business environment and internal control systems factors.

There are several more aspects while modeling operational risk according to
Chavez et al. (2006) and Cruz (2004), if a Loss Distribution Approach (LDA)
model is used, then financial institutions must quantify frequency distributions
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and severity of operational losses in each entry of the risk matrix within a year
time interval. Regarding OR, there are some applied approaches that estimate
OpVar using several different methods, see Venegas-Mart́ınez (2006), Mart́ınez-
Sánchez and Venegas-Mart́ınez (2013a, 2013b, 2013c).

Main objective of the present research is to quantifying capital
requirements of OR based on Bayesian inference by using an operational risk
advanced measurement model, particularly when historical information is not
available for a typical Mexican financial institution. The model employs a
conjugated Poisson-Gamma distribution and feeds from experts interviews
information so parameters can be measured. It is expected a direct and positive
relationship between unexpected events and economic losses.

This document is organized as follows: an annual loss model thru business
line and event type for estimating operational risk is presented in section 2,
Bayesian inference theory is explored in section 3, a Bayesian analysis with a
conjugated Poisson-Gamma distribution for estimating frequency and severity
in a financial firm is performed in section 4, operational risk capital is estimated
by using the parameters obtained from Bayesian analysis in section 5, main
conclusions are characterized in section 6.

2. Annual Loss Model

A model with a single risk entry (business line/risk type) for annual losses is a
process compound by:

M =

n
∑

i=1

Pi (1)

where n is the number of annual events modeled as a random variable with a
discrete Poisson distribution and Pi = 1, 2, · · ·n are the severity of the events
modeled as an independent random variable of a continuous distribution.
Frequencies n and severities Pi are assumed to be independent conditions of
parameters distribution. Estimation of +annual loss distribution modeling
frequency and severity is a typical technique (Klugman, et al., 2012).

Frequency and severity estimation is a challenge specially because OR main
characteristics when low frequency and high impact events occur, more so if
insufficiency or scarcity of historical data exists. Among institutions
external information sources are hard to find and even harder to apply because
of the operations volume and the individual operational characteristics of them.
Therefore, is complex to estimate probability distributions using only internal
and external data, in fact information available presents limited capacity of
predicting the future due to uncertainty environments, if information exists.

Hence, is very important to incorporate scenario analysis in the model since
financial institutions use it to identify risks, so internal and external expertise
of events can be found, current controls as well as those to be implemented in
the future can be identified, etc. Moreover, is possible to recognize weakness,
strengths and other factors acquired through an approximated quantitative
evaluation of frequency and severity distributions based on experts knowledge;
subsequently this type of analysis must be combined with LDA models.

Bayesian inference is a technique that integrates experts knowledge and
data analysis (Bühlmann and Gisler, 2005). This method creates structural
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models where experts knowledge is incorporated by specifying a priori
distributions of models parameters, which are updated as information becomes
available. At any time an expert can evaluate the a priori distribution based on
new information and to include it into model. In the following section, Bayesian
inference technique is described in the context of OR and is implemented in the
quantification of OR for a financial institution. For the purpose of the present
research, an expert is defined as an extremely experienced official employee with
knowledge in operation and vulnerabilities of financial institutions.

3. Bayesian Inference

Bayesian approach is based on the subjective interpretation of probability, as a
degree of believes respect uncertainty, see Venegas-Mart́ınez (2008, Chapter 73).
Bayesian inference considers an unknown parameter as a characteristic where a
degree of believes can be expressed from and also be modified because sample
information. A parameter is a random variable with an a priori distribution
based on a probability assigned before sample evidence, when evidence is gotten
the a priori distribution is adapted so a posteriori distributions emerges and
inference respect the parameter can be formulated.

If a random vector of observations P = (P1, P2, · · · , Pn) with a density of
h(P | θ) for a vector of parameters θ = (θ1, θ2, . . . , θk) is considered, where
observations and parameters are always weighted as random ones, then Bayes
theorem can be expressed as:

h (P, θ) = h (P |θ)π (θ) = π̂ (θ|P )h (P ) , (2)

where π(θ) is the parameters density also known as a priori distribution, π̂ (θ|P )
is the parameters density given by observed data P , also known as a posteriori
distribution, h(P, θ) is the jointly density of observed data and parameters,
h(P | θ) is the density of observations given by parameters and h(P ) is the
marginal density of P. If π(θ) has a continuous distribution, then marginal
density can be written as:

(P ) =

∫

h (P |θ)π (θ) dα. (3)

For the case of discrete distribution,

h (P ) =
∑

h (P |θ)π (θ) . (4)

For simplicity in notation π(θ) will be considered only in a continuous way.
The objective is to estimate predictive distributions of frequency and severity
for each observation Pn+1 given the available information P = (P1, P2, · · · , Pn).
If parameters θ, Pn+1 and P are pairwise and mutually independent, then
conditional density given the vector of observations is:

f (Pn+1|P ) =

∫

f (Pn+1|θ) π̂ (θ|P ) dθ. (5)

By assuming that P1, P2, · · · , Pn and Pn+1 are identically and independently
distributed given θ, then using equation (2) the following a posteriori
distribution is gotten:
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π̂ (θ|P ) =
h (P |θ)π (θ)

h (P )
. (6)

where h(P | θ) is the probability function of observations, h(P ) is a
normalization constant from which a posteriori distribution function can be
seen as an output of “previous knowledge” because observations of probability
function. Since scarcity of data is a relevant scenario for studding OR it is
proposed that:

• A priori distribution π(θ) must be estimated by experts knowledge.

• A priori distribution must be weighted among observed data by using
equation (6) so a posteriori distribution π̂ (θ|P ) can be obtained.

• Equation (5) is going to be used to calculate a predictive distribution of
Pn+1 given observations P .

Bayesian estimations approach leads to optimum estimations that minimized
the quadratic error of prediction (Bühlmann and Gisler, 2005).

3.1 A Priori Distribution

If observations P1, P2, . . . , Pn are conditional given θ and also independent and
identically distributed with density f(Pi | θ), then probability function can be
written as:

h (P |θ) =

n
∏

i=1

f (Pi|θ) . (7)

A posteriori distribution calculated after k number of observations will be
π̂k (θ|P1, P2, . . . , Pk), by using equation (6) it can be observed that:

π̂k (θ|P1, P2, . . . , Pk) ∼ π (θ)

k
∏

i=1

f (Pi|θ) ∼ π̂k−1 (θ|P1, P2, . . . , Pk−1) f (Pk|θ) .

(8)
From equation (8) can be deduced that the updated process used to

calculate a posteriori distributions from a priori distributions are produced thru
iterative mode. There are only needed k − 1 and k observations in order to
determine a posteriori distribution after k observations. Therefore historical
losses data are not required so is easier to modeling events, which allows experts
to adjust a priori distributions at any time.

Formally, an a posteriori distribution calculated after k − 1 observations
can be considered as a priori distribution for the k observation. In practice,
experts must set an a priori distribution π(α) and then a posteriori distribution
has to be calculated by using equation (6) based on updated data, the a
posteriori distribution function can be adjusted and used as a priori distribution
for subsequent data.

4. Bayesian Analysis

Conjugated distributions are useful when Bayesian inference takes place. If F
denotes a variety of density functions f(P | θ), indexed by θ, and one kind U
of an a priori set of densities π(θ) exists, then π(θ) is a conjugated family for
F if the a posteriori density is f (P ) =

∫

f (P |θ)π (θ) dθ, and is part of the
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kind U∀f ∈ F and also π ∈ U . If a complete family U contains all distribution
functions then is a conjugated family of F as well, nonetheless it is important
that U be as small as possible meanwhile keeps a realistic distribution.

Conjugated pairs of functions F −U more engaged for modeling frequency
and severity in an OR analyses are: Poisson-Gamma, LogNormal-Normal and
Pareto-Gamma (Anghelache, Olteanu, 2011). In all these cases a priori and a
posteriori distributions are the same kind, hence a posterior distribution
parameters are easy to calculate by using a priori distribution parameters and
observations. In this analysis a Poisson distribution is employed for modeling
frequency when unexpected events could generate an extremely economic lost,
that is severity, which is modeled by a Gamma distribution. Therefore the use
of a conjugated Poisson-Gamma distribution is in order to estimate OR.

Poisson distribution is one of the most used function distributions in OR
modeling of losses frequency where occurrence frequency is not constant over
time. Consider N = (N1, N2, · · · , Nn) number of observations for a independent
random variable with a Poisson distribution (λ) and conditional density that
stands for the number of OR events observed within the financial institution,
with a log likelihood given by:

f (N |λ) = e−λ λN

N !
, λ ≥ 0 (9)

and the a priori distribution for λ is a Gamma distribution (α, β) with a density
function given by:

π (λ|α, β) =

(

λ
β

)α−1

Γ (α)βα
e−

λ
β , λ > 0, α > 0, β > 0. (10)

If λ and N1, N2, · · · , Nn are independently as well as known, then the probability
function is:

h (N |λ) =

n
∏

i=1

e−λ λNi

Ni!
. (11)

By using equation (6), the a posteriori distribution is:

π̂ (λ|N) ∼

(

n
∏

i=1

e−λ λNi

Ni!

)







(

λ
β

)α−1

Γ (α)βα
e−

λ
β






∼ e−λ(nβ+1

β )λ
α+

n
∑

i=1

Ni−1

(12)

Consider now,

α̂ = α +

n
∑

i=1

Ni,

β̂ =
β

nβ + 1
(13)
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The a posteriori distribution function is a Gamma
(

α̂, β̂
)

distribution as the

same as the a priori distribution but with parameters
(

α̂, β̂
)

. The expected

number of events, given by observed data, E (Nn+1|N) will be the a posteriori
distribution measure as,

E (Nn+1|N) = E (λ|N) = α̂β̂ =

(

α +

n
∑

i=1

Ni

)

(

β

nβ + 1

)

=
βα

nβ + 1
+

β
∑n

i=1
Ni

nβ + 1
=

nβN̄

nβ + 1
+

βα

nβ + 1

= wN̄ + (1 − w) θ

(14)

The more the number of observations n is, the higher the value of w
will be giving a higher weigh to observations and a lower weigh to
experts opinion; the less the number of observations, w decreases and the
experts opinion has a higher weigh. In order to incorporate updated data,
the same process must be carried out in a recursive condition. Considering
observed events N1, N2, · · · , Nk and assuming an a priori probability
distribution π (λ|α, β), the Gamma (α, β) function is initiated and the a
posteriori distribution function π̂ (λ|N1, N2, . . . , Nk) after the k observation is

the Gamma distribution
(

α̂k, β̂k

)

with:

α̂ = α +

k
∑

i=1

Ni,

β̂ =
β

kβ + 1
. (15)

where,

α̂k = α +

k−1
∑

i=1

Ni + Nk = α̂k−1 + Nk,

β̂k =
β̂k−1

β̂k−1 + 1
.

(16)

Thus allows a posteriori distribution parameters to be based on recently
observations and be calculated by updated data as becomes available. Experts
can estimate the number of events, λ, but will not have absolute certainty of
their estimation. The best approximation will be E [E (N |λ)] = E (λ). If the
expert specifies E(λ) and has the certainty for a true value of λ to be within
the interval (a, b), with probability P [a ≤ λ ≤ b] = p, then parameters α and
β can be estimated numerically.

E (λ) = αβ, (17)
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P [a ≤ λ ≤ b] = p =

b
∫

a

π (λ|α, β) dλ = Fα,β (b) − Fα,β (a) . (18)

The accumulative Gamma α, β distribution function is:

Fα,β (z) =

∫ z

0

(x)
α−1

Γ (α)βα
e−

λ
β dx. (19)

So α and β are easily estimated. Now lets consider the information
from a financial institution where experts deliberate that E (λ) = 1.2 and
P [0.8 ≤ λ ≤ 1.5] = 0.70, so the a priori distribution will be a Gamma
(α ≈ 11.8273, β ≈ 0.1015).1 If we assume that the financial institution will face
2 losses within a year once the a priori distribution has been estimated, then
by using equation (16) the a posteriori distribution parameters are:

α̂1 = α̂0 + N1 = 11.8273 + 2 = 13.8273, (20)

β̂1 =
β̂0

β̂0 + 1
=

0.1015

0.1015 + 1
= 0.0921, (21)

λ̂1 = α̂1β̂1 = (13.8273) (0.0921) = 1.2737. (22)

If in the following year a loss is observed, then the a posteriori distribution
parameters will be:

α̂2 = α̂1 + N2 = 13.8273 + 1 = 14.8273, (23)

β̂2 =
β̂1

β̂1 + 1
=

0.0921

0.0921 + 1
= 0.0843, (24)

and

λ̂2 = α̂2β̂2 = (14.8273) (0.0843) = 1.2506. (25)

With further observations λ̂ value will be updated as equation (16) shows.
Therefore, observed data will update the distributions for events with an initial
condition based on an experts opinion.

1 Such values were calculated in Microsoft Excel from a Solver Model.
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5. Capital Risk Measurement

The financial institution has no constrain regarding any regulations to specify
the confidence percentage that loss distribution must be estimated at; since
the Comisión Nacional Bancaria y de Valores of Mexico does not stipulate a
specific value on its regulations, the financial institution decided it should be
95%. Assuming frequency has a distribution P (.|λ) and severity is measured
by f (.|α), given λ and α, also a posteriori distribution function π̂ (λ|N) and
π̂ (α|X) where are λ and α estimated thru distribution functions defined by
experts, the loss distribution can be calculated using Monte Carlo method as
follows:

1. λ and α need to be simulated from π̂ (λ|N) and π̂ (α|X) distributions.

2. To simulate N number of events for a frequency distribution, given λ.

3. To simulate severities Xn where n = 1, 2 · · ·N for severity distribution
f (.|α), given α. It is important to keep in mind that severities are modeled as
independent and identically distributed.

4. Expected loss is Z =
N
∑

i=1

Xn

5. Finally is necessary to repeat k times steeps 1 to 4 for constructing a loss
sample Z(K) with k = 1, 2 . . .N Obtained values are organized in a descendent
way and observed at the 95% of the series.

Since there is scarcity of data for calculating OR capital, Bayesian net
has to be updated as soon as new information comes up form risk events. The
expected number of risk events (N) for the firm is 1.20 and expected loss severity
(X) is $2,300.00 pesos. Under independency,

E (loss) = E (N) ∗ E (X) = 2, 760. (26)

In order to calculate a loss distribution by Monte Carlo method, Poisson
frequency distribution is assumed with λ=1.20 and Gamma distribution with
(α ≈ 11.8273, β ≈ 0.1015), and then:

1. Experts assume parameters of a posteriori distribution.

2. 10,000 events N are simulated based on P (N |λ = 1.20).

3. 10,000 random numbers are simulated based on

(X|α ≈ 11.8273, β ≈ 0.1015).

4. Expected loss is obtained from E (loss) = E (N) ∗ E (X).

5. The 10,000 simulations are organized in a descendent way and the value
from 95% of the series is found, hence OpVar is $18,297.00 pesos.



360 Nueva Época REMEF (The Mexican Journal of Economics and Finance)

Graphic 1. Losses values from Monte Carlo Simulation

Source: Own elaboration

The OpVar at 95% confidence level gives a maximum expected loss of
%18,297.00 pesos from which expected loss is $2,760.00 and a non-expected
loss of $15,537.00 pesos. The latter estimation was conducted by selecting
λ = 1.2 while P [0.8 ≤ λ ≤ 1.5] = 0.70, which is the average value for the
Poisson distribution. In order to see how the OpVar behaves within the entire
interval, the whole simulation process described previously was repeated for 6
different combinations of values of α, β and λ, the results are summarized in
table 1, by setting λ = {λ|λ ∈ R, 0.8 < λ < 1.5} since corner values produce no
plausible Gamma distribution parameters. Table 1 shows all simulations.

Table 1. Monte Carlo Simulations Set

Source: Own elaboration

It is easy to see that OpVar increases as Poisson distribution parameter does
it as well, in fact there is a positive correlation between them since ρλ,OpV ar =
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0.185514, thus been consistent with the theory. The corresponding losses values
for the set of simulations are presented in Graphic 2 where it can be analyzed
severity and frequency as well. In all simulations a small loss value, around
$3,000.00 pesos, present a high frequency among the 10,000 observations, then
as losses values are getting higher frequency starts to decline until OpVar is
reached, afterwards frequency and severity jointly decline. Most frequency
distributions are bimodal shaped.

Graphic 2. Losses Values from Monte Carlo Simulation Set

Source: Own elaboration

OR is characterized by the occurrence of low probability events with elevated
severity, this kind of events rarely happen so there is not enough information
available within financial institutions or statistically significance data bases that
can be used to perform goodness-of-fit tests; most of this tests are based on
the measurement of the distance between observed and estimated data.
Nevertheless the above graphics show an acceptable distribution fit.

Also it is important to highlight that since knowing the economic impact as
real as possible is desirable, a Monte Carlo without variance reduction must be
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used. Monte Carlo simulations with variance reduction generate biased values,
hence biased distributions.

On the other hand, when the expected number of events takes values from
0.9 to 1.4 then expected OpVar is $16,959.39 pesos with a volatility of $2,469.64
pesos, therefore OpVar dynamics can be easily shaped, see Graphic 3.

Graphic 3. OpVar Dynamics

Source: Own elaboration

As long as experts expected event increases, OpVar will increase as well. Even
more, OpVar is bearable when only one losses event occurs nevertheless OpVar
gets higher each time losses event occurs, it is important to highlight that
OpVar tends to increase for integer values. As long as unexpected events occur
twice a year at most, economic lost will be bounded $16,000 and $18,000 pesos.
Consequently it is necessary for the firm to design a strategy to avoid losses
events.

6. Conclusions

Through Bayesian inference theory the present research quantifies frequency
and severity of Operational Risk. This method is based on parameters
specifications from experts for an a priori distribution of frequency and
severity distribution functions by using available data of a financial firm.
Afterwards, observed data and parameters for a posteriori distribution
estimations are weighted so OR capital is calculated for a year time line.
Calculations are simple and one mayor advantage of this method relays in jointly
considering experts knowledge and historical data for a financial firm, thus
allows determining operational risk capital thru internal data. Furthermore,
the model can be updated and calibrated as soon as new information comes up
during financial firms operations, which will give more reliability and strength
to modeling operational risk, and hence to inference collect from it as well. For
a set of simulations it can be proved that a positive relation between OpVar
and experts event values exists and that frequency and severity of losses is
directly related to OpVar optimum value at 95% of confidence. Consequently,
this research provides with an empirical model that uses prior information
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usually delivered by experts within financial institutions so operational risk can
be managed.

Main advantages of using Bayesian inference to calculate low frequency
risks such as operational risk events, consist in getting stable values due
to combining experts opinion and few available data along with the proposed
methodology, also in specifying an apriority distribution so frequency and
severity can be estimated simultaneously, in weighting the a priori distribution
with current data to estimate a posteriori distribution in order to obtain new
model parameters.

Finally, we can calibrate the network by incorporating new event
information as it is obtained over time. It is important to note that the OpVar
can be easily measured with little information even with one or two observations,
so there is no dependence on a huge set of information. One disadvantage is
that an experts opinion can be untrusted, so is recommendable the expert to
be part of the core staff in the financial institution.
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