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The objective of this article is to develop a parametric approach to estimating auctions with incomplete data 

using Extreme Value Theory (EVT).  The methodology is mainly theoretical: we first review that, when only 

transaction prices can be observed, the distribution of private valuations is irregularly identified. The sample 

bias produced by nonparametric estimators will affect all functionals of practical interest.  We provide 

simulations for a best-case scenario and a worst-case scenario.  Our results show that, compared to 

nonparametric approaches, the approximation of such functionals developed using EVT produces more 

accurate results, is easy to compute, and does not require strong assumptions about the unobserved distribution 

of bidders' valuations.  It is recommended that financial operators working with auctions use this parametric 

approach when facing incomplete datasets.  Given the difficult nature of the analysis, this work does not provide 

large sample properties for the proposed estimators and recommends the use of bootstrapping.  This article 

contributes originally to the literature of structural estimation of auction models providing a useful and robust 

parametric approximation. 

JEL Classification: C53, C57, C65, D44. 

Keywords: Extreme Value Theory, Structural Estimation, Auctions, Transaction Prices, Irregular 

Identification. 

El objetivo de este artículo es desarrollar un enfoque paramétrico para estimar subastas con datos incompletos 

utilizando la Teoría de los Valores Extremos (EVT). La metodología es principalmente teórica: primero 

revisamos que, cuando solo se pueden observar los precios de transacción, la distribución de las valoraciones 

privadas se identifica de manera irregular. El sesgo de la muestra producido por los estimadores no 

paramétricos afectará a todos las formas funcionales de interés práctico. Proporcionamos simulaciones para el 

mejor de los casos y el peor de los casos. Nuestros resultados muestran que, en comparación con los enfoques 

no paramétricos, la aproximación de tales formas funcionales desarrolladas usando EVT produce resultados 

más precisos, es fácil de calcular y no requiere fuertes suposiciones sobre la distribución no observada de las 

valoraciones de los oferentes. Se recomienda que los operadores financieros que trabajan con subastas utilicen 

este enfoque paramétrico cuando se enfrentan a conjuntos de datos incompletos. Dada la naturaleza difícil del 

análisis, este trabajo no proporciona propiedades de muestra grande para los estimadores propuestos y 

recomienda el uso de bootstrapping. Este artículo contribuye originalmente a la literatura de estimación 

estructural de modelos de subasta proporcionando una aproximación paramétrica útil y robusta. 

Clasificación JEL: C53, C57, C65, D44. 

Palabras clave: Teoría de los Valores Extremos, Econometría Estructural, Subastas, Precios de 

Transacción, Identificación Irregular 
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1 Introduction

During the last few years Extreme Value Theory (henceforth EVT; see Fisher and Tippet, 1928; Gumbel,
1935) has proved its usefulness across various scientific fields, such as engineering, finance and even public
health (Thomas et al., 2016). The new literature that has started to explore the potential of EVT in
Economics has focused mostly on theoretical problems (Gabaix et al., 2003, 2006; Benhabib and Bisin,
2006).

In this article I address the use of EVT for the estimation of auction models within the framework
presented by Haile and Tamer (2003), which restricts the focus to the case of an incomplete datasets and,
in particular, to those environments where only transaction prices can be observed. This is the case, for
instance, of descending bid (Dutch) auctions, where only the winning bidder reveals information about his
valuation.

Menzel and Morganti (2013) show that under such conditions the nonparametric estimator for the distri-
bution function converges slowly, and that the small sample bias spreads to all the estimates of functionals of
practical interest, such as the expected revenue or the optimal reserve price. In general, with small samples
it is preferable to adopt a parametric approach. However, the choice of the parametric distributional form
is usually arbitrary, as researchers typically do not have theories to guide their choice (see Mohlin et al.,
2015; Takano et al., 2014 for studies under complete datasets). Luckily, this is not the case in the present
context. EVT theoretically guides us toward a natural parametric assumption allowing us to analytically
approximate functionals of interest. de Haan et al. (2009) and (2013) introduce EVT in the estimation of
auction models, restricting their analysis to the expected value and on the number of active bidders. In this
article, we extend the analysis to other functionals such as the optimal reserve price. We also analyze the
performance of standard nonparametric estimators and quantify how the bias spreads across functionals of
practical interest. Over the years, the analysis of auctions has inspired one of the most successful marriages
between theoretical and econometric models. Since the seminal work of Vickrey (1961), theorists have con-
structed a rich framework to map private valuations into bids. In their attempt to identify and estimate the
distribution of these private values, econometricians (see, for instance, Guerre, Perrigne and Vuong, 2000;
Aradillas-Lopez, Gandhi and Quint, 2013) have adapted the results from the theory as restrictions for these
data (that is, the bids).

The general approach to nonparametric identification in auction models relies on this theoretical mapping
between the distribution of bidders’ valuations - the object of interest - and the distribution of observed bids
- the data. Given the latter, we can obtain the former by inverting the mapping.

When an econometrician has access to limited data - for instance, to dataset reporting only transaction
prices - Athey and Haile (2002), and Haile and Tamer (2003) show that it is still possible to recover the missing
object of interest using a statistical mapping, which establishes a relationship between the distribution of any
order statistics and the underlying distribution of the data. The use of such mapping is justified by the
observation that transaction prices are an order statistics of the bids, as explicitly described by the rules of
the auction. For instance, in a second price auction, the transaction price is equal to the second highest bid.
Given the distribution of any order statistics, it is possible to invert the statistical mapping to back out the
underlying distribution.2

However, as Menzel and Morganti (2013) pointed out, even though the statistical inversion preserves

2Here it is important to stress the different roles taken by the theoretical mapping and the statistical mapping mentioned
above. The theoretical mapping links bids to individual valuations, whereas the statistical mapping concerns the link between
transaction prices (that is, order statistics) and bids. From now on, we are going to abstract from the first and focus on the
second. The inversion problem that we will refer to goes from the distribution of transaction prices to the distribution of
unobserved bids.
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consistency, convergence of the estimated distribution to the true one with respect to an appropriate function
norm fails to reach the root-n rate, affecting all subsequent computations. Moreover, the convergence rate is
affected by the number of bidders, N : when the number of bidders diverges, the rate converges to zero, and
the magnitude of the sample size becomes irrelevant.

Because an econometrician observes just an extreme (or a function of an extreme) of the parental distribu-
tion, the dataset is unbalanced - that is, observations on the lower part of the support will be undersampled,
whereas observations on the higher portion of the support will be oversampled.

Consequently, inverting the distribution of an extreme imposes a downward bias around the left end of
the support, and an upward bias on the right end. All the quantiles are thereby pushed to the right, and
the estimates based on them will suffer as a result. The problem is particularly evident when the number
of participants in an auction approaches infinity, as the distribution of transaction prices collapses to a
degenerate one with mass point at the upper extreme of the support. Monte Carlo experiments show that
even when N is finite and small, the bias remains significatant even in the presence of large samples.

In principle it is possible to attenuate the problems on the right tail by smoothing the nonparametric
estimators with an appropriate Nearest Neighborhood Estimator, but in practice this will be difficult and
time consuming. Trimming and smoothing procedures could, in theory, solve the problem on the left tail,
though the choice of the regularization parameters is obstructed by several trade-offs, and the criteria for an
efficient procedure are still not available.

Given these considerations, we suggest an alternative, practical approach based on EVT. This parametric
method relies on well known convergence results concerning the extremes of a distribution (Fisher and Tip-
pet, 1928; Gnedenko, 1943). Under very mild assumptions, the distribution of such extremes - appropriately
normalized - converges uniformly to one of three possible distributions, the so-called Extreme Value Distribu-
tions (EVD). When we rely on these results, it is possible to obtain approximate estimates of functionals of
practical interest, such as the expected revenue or the optimal reserve price, in two steps. First, we estimate
the two normalizing constants by minimizing the distance between the normalized empirical distribution of
an extreme and the corresponding EVD. Second, by applying a simple change of variable to the integral that
expresses the expected revenue of the auction, we can rewrite everything in terms of EVDs and their trans-
formations. EVT also suggests a natural approximation for the underlying distribution of bids: Generalized
Pareto.

We present results from Monte Carlo simulations, which show that the approximation method performs
better than the nonparametric one - even in cases where the convergence of the extreme and the limiting
distribution happens at a very slow rate.3

Even though this extreme value estimator and its functionals suffer from the same limitations on the left
tail as their nonparametric counterparts, they appear to be more robust. Moreover, as this relative advantage
of EVT seems to hold also for those distributions with poor approximation, we can confidently count on the
generality of this approach.

This approximation gets more precise as N increases, making EVT more appealing to estimation exactly
in those instances where the nonparametric estimator gets less accurate. Finally, we observe that computation
time is minimal, making this approach particularly attractive for applied works.

EVT provides a general framework that can be adapted to all problems in which an order statistics is
observed. For instance, an interesting application for financial markets is the estimation of the unobserved
distribution of valuations in multi-unit auctions with uniform price.

This article is structured as follows: Section 2 presents the nonparametric estimator and discussed its

3The case of the Normal distribution is one example of this. The rate of convergence for extremes drawn from a normal
distribution is on the order of O(1/ logN).

https://doi.org/10.21919/remef.v16i2.596
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behavior on the tails. Section 3 introduces basic and general results from EVT. In Section 4 we apply EVT
to the auction framework and show how it is possible to obtain useful results relying only on EVDs and their
transformations. Finally, Section 5 presents results from Monte Carlo simulations.

2 Nonparametric Identification and Estimation

We restrict our attention to symmetric independent private value (IPV) auction models, where only the
transaction price is observed. For expositional purposes we focus on the case of second price auctions4.
The typical dataset consists of observations from n identical and independent auctions, where each auction
counts exactly N bidders. We are use the capital letter N to denote the number of bidders, whereas lower
case n denotes the size of the sample. We assume that N is exogenous (Athey and Haile, 2002; Haile and
Tamer, 2003). Every bidder i = 1, · · · , N submits an offer, bi, which depends on her own private value for
the item, vi, on the format of the auction, and on the game she is playing against all the other bidders.
Private valuations are independently drawn from a common distribution, FV . The distribution of the bids is
denoted by F . The econometrician observes only the transaction price from each auction: this transaction
price is an extreme of the parental distribution. For instance, in a second price auction, the transaction
price corresponds to the N − 1th order statistics (the second maximum) 5. The k-th order statistic of N
independent bids {b1, · · · , bN} has distribution6

Gk:N (z) =
N !

(N − k)!(k − 1)!

∫ F (z)

0

tk−1(1− t)N−kdt (1)

Athey and Haile (2002) show that the mapping implicitly described above is always invertible: therefore
it is possible to obtain the distribution of the bids, F (z) = φ(Gk:N (z), N), whenever we can estimate the
distribution of the transaction prices, Gk:N (statistical inversion). A simple nonparametric estimator for the
distribution of the transaction prices is

Ĝk:N (z) =
1

n

n∑
j=1

1{Pj≤z} (2)

which7, by Glivenko-Cantelli theorem, converges almost-surely uniformly to the true distribution Ĝk:N (z)−
Gk:N (z) = op(1).

Following Haile and Tamer (2003), the Continuous Mapping Theorem gives φ(Ĝk:N , N)− φ(Gk:N , N) =

φ(Ĝk:N , N) − F (z) = op(1). The convergence of the last quantity is also uniform in z: as the mapping φ is
continuous over a compact space, it is also uniformly continuous. This establish uniform convergence.

However, as shown in Menzel and Morganti (2013), this mapping is not Lipschitz continuous, meaning

4As the dominant strategy in second price auctions is to bid one’s private value, we can conveniently ignore the theoretical
inversion CHECK and focus on what we called the statistical mapping

5We define the k-th order statistics in the following way: given a set of N bids, we order them starting from the smallest and
ending with the largest. The set {b1, . . . , bN} denotes the ordered list. The first element of the list is the first order statistics,
and corresponds to the minimum of the set. The N -th order statistics is the last element of the list, and corresponds to the
maximum. The k-th order statistics is simply the element in the k-th position of the list.

6so that, for instance, the distribution of the second maximum, (or, the (N − 1)th order statistics) is GN−1:N (z) = N(N −
1)
[
F (z)N−1

N−1
− F (z)N

N

]
= NF (z)N−1 − (N − 1)F (z)N .

7The symbol 1{A} denotes the indicator function, which assumes value equal to 1 when A is true, and equal to 0 when A is
false. Pj denotes the transaction price from the jth auction.
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Figure 1: Nonparametric estimation of the CDF of a Uniform Distribution: N = 10, n1 = 25 and n2 = 1000

that its derivative is unbounded at critical points of the support, {z, z}8

This creates a serious problem in the estimation, because even small biases will be magnified in neighbor-
hoods around these points. Moreover, it is possible to see that, as N increases, the problem becomes more
severe on the lower tail, whereas it attenuates on the right end of the support.

The convergence of the estimated distribution to the true one will be slow and dependent on the number
of bidders. When N grows indefinitely, identification is lost: the distribution of the extreme degenerates to
a mass point at the upper bound of the support, and the rate of convergence becomes equal to zero.

This means that when the number of bidders is high we should expect nonparametric estimates to be
a poor description of the behavior of the lower tail of the distribution. The distribution of the bids is
irregularly identified. A similar problem with finite-dimensional parameters has been analyzed by Khan and
Tamer (2010). Figure 1 shows how the nonparametric estimator of the cdf of a uniform fails to identify the
lower tail of the distribution. Notice that increasing the number of observations from n1 = 25 to n2 = 1000

does not improve the quality of the estimation.
The rate of convergence of the nonparametric estimator φ(Ĝk:N (z), N), with F (z) ∈ (0, 1), decreases in

N , and approaches the value of zero as N goes to infinity. Proof Remark 1 For the kernel estimator defined
above,

√
n[Ĝk:N (z)−Gk:N (z)] −→ N (0, σ2(z)), where σ(z)2 = F (z)[1− F (z)]. Then, using the Delta Rule:

√
n[φ(Ĝk:N (z), N)− φ(Gk:N (z), N)] −→ N (0, σ2(z)[φ′(Gk:N (z), N)]2)

We need to show that φ′(G,N) diverges to infinity as N increases. From the implicit definition of the map-
ping, we obtain

φ′(G,N) ≡ ∂φ
∂G =

[
N !

(N−k)!(k−1)!φ(G,N)k−1(1− φ(G,N)N−k)
]−1

.

We restrict our attention to the class of problems where k/N −→ 19 . First we show that G(z,N) falls
to 0 in the lower tail of the distribution10 as N increases. When k/N −→ 1, we can denote N !

(N−k)!(k−1)! as

8For k = N − 1, the mapping φ is defined implicitly by

G = N(N − 1)

[
φ(G,N)N−1

N − 1
−
φ(G,N)N

N

]
(3)

By the Implicit Function Theorem, we can obtain its derivative

φ′(G,N) = 1/
{
N(N − 1)φ(G,N)N−2[1− φ(G,N)]

}
which is unbounded on the lower tail of the distribution, where G goes to zero, and on the right end, where G goes to 1.
9We focus on the higher extremes of the distribution: the first maximum, the second maximum and so on. We do not consider

the lower extremes of the distribution: the minimum, the second minimum... This assumption is consistent with the framework
that we are using: auctions models will be involved with the former type of extremes.

10What we mean by lower tail of the distribution depends on the particular extreme that we are considering: for instance, if
what we are considering is the maximum, the relevant range becomes the full support of the distribution, excluding the upper

https://doi.org/10.21919/remef.v16i2.596


6
REMEF (The Mexican Journal of Economics and Finance)

Extreme Value Theory and Auction Models

P (N, q+1), a polynomial in N of degree q+1, where q = N−k. Then Gk:N (z) ≤ P (N, q+1)
∫ F (z)

0
t(

k−1
N )Ndt.

The argument of this integral is continuous over a compact set, therefore it is uniformly continuous. Riemann
integrability applies to the limit of the sequence, limN−→∞

∫ F (z)

0
t(

k−1
N )Ndt =

∫ F (z)

0
limN−→∞ t(

k−1
N )Ndt =

0 for z such that F (z) < 1, and for k/N −→ 1. The integral falls to zero fast and dominates the diverging
effect of the polynomial.

Because G(z,N) falls to zero as N increases to infinity when z belongs to a lower tail of the distribution,
φ(G,N) must fall to zero as well, in order to balance expression (1). This makes the derivative φ′ unbounded.
�

The typical dataset is necessarily unbalanced. Higher values of the support are oversampled whereas
lower values are undersampled to the point that entire portions of the lower tail might not even be observed
in finite samples. All the measures based on our nonparametric estimates will be distorted accordingly:
for instance, both expected revenue of the auction and reserve price will be systematically upward biased.
This problem becomes worse as N grows but it should eventually fade as sample size increases. However,
Monte Carlo simulations show that the increase in N dominates the effects of an increase in n. Nonparametric
estimators perform poorly on both tails of the distribution: the bias fades slowly, and in general affects all the
measures of interest. Appropriate smoothing procedures might help reducing the bias, but they would require
appropriate calibrations of the regularization parameters, and this task is difficult and time consuming. No
criterion is available that guides the researcher around the trade offs that such regularizations imply. In the
next sections we are going to introduce a new approach to estimation that will require minimum computation
time: we will show that such parametric method produces better results than the nonparametric one. But
in order to discuss the method, we need to introduce some basic concepts about EVT.

3 Extreme Value Theory

The fundamental result of EVT is the following: if the distribution of the maximum of N independent draws
from F , appropriately normalized, converges to a distribution function G as N goes to infinity, then G must
be one of the following three:

G1(z) = exp(−z−α), z > 0 (Frechet)

G2(z) = exp(−(−z)α), z ≤ 0 (Weibull)

G3(z) = exp(−e−z), z ∈ R (Gumbel)

Formally, let P be a probability measure with distribution function F . Denote with Zi:N the ith order
statistics for the sample of size N . [ Fisher-Tippet-Gnedenko] If there exist real numbers aN > 0 and bN ,
such that PN

(
ZN:N−bn

an
≤ z
)

11tends to some nondegenerate limit G(z) then, either G = G1, or G = G2, or
G = G3

If it is possible to find a shifting parameter and a scaling parameter, such that the normalized distribution
of the maximum converges, then the limiting distribution belongs to the Extreme Value family. The theorem
grants a natural parametric approximation for the distribution of the maximum, up to two normalizing
parameters. Gnedenko (1943) also gave necessary and sufficient conditions for F to belong to the domain of
attraction of any of the above limits (denoted F ∈ D(Gh)h=1,2,3). Von Mises (1936) derived a set of sufficient
conditions which are more easily testable.

extreme.
11PN denotes the N -fold independent product of P
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It is possible to show that the class of distributions that satisfy the Von-Mises conditions is wide, and
includes all known analytical distributions. More interestingly for our purposes, Falk and Marohn (1993)
rewrite the von Mises conditions in terms of convergence of the underlying distribution to a corresponding
Generalized Pareto Distribution (gPds).

Falk (1985) shows that the von Mises conditions imply pointwise convergence of the density fN to gN as
N goes to infinity 12. This, by virtue of Scheffé’s Lemma, in turns entails its uniform convergence over all
Borel sets (convergence in Total Variation).

The rate of convergence of supx |FN (aNx + bN ) − G(x)| to zero depends on the particular distribution
F : for instance, it is of order O(1/N) for the negative exponentials, and of order O(1/ logN) for normal
distributions13. The fastest possible convergence rate is of order O(1/N) and is achieved by members of the
gPd family. We can only make conjectures about the quality of the approximation, because we don’t have
information about the underlying distribution. So, as the normal is known to converge at low rates, we will
use it as a worse-case scenario for our simulations. Because we obtained satisfactory results with the normal,
we are optimistic about the robustness of the estimator to different distributions.

The results of EVT presented so far are not limited to the first maximum: in fact, they extend to the
whole joint distribution of the extremes. Define m = N−k+1. If F satisfies one of the Gnedenko conditions,
then Gk:N (z) converges uniformly to G

(m)
h (z) = Gh(z)

∑m−1
i=0

1
i! [− logGh(z)]i, where h = 1, 2, 3 indicates

the appropriate limiting EVD. For example, for the case of the second maximum (m = 2), the limiting
distribution becomes

G
(2)
h (z) = Gh(z)[1− logGh(z)] (4)

4 EVT in the Estimation of Auction Models

We can now use the results of the previous section to approximate the distribution of the extreme with the
appropriate EVD. We are going to show that objects of interest such as expected revenue and optimal reserve
price can be easily obtained through a simple transformation.
We assume that F possesses a derivative f . The expected revenue for First Price and Second Price auctions,
corresponding to the expectation of the second maximum valuation, is given by the following integral (see,
for instance, Krishna (2002))

E[R|N ] =

∫ w

0

N(N − 1)xF (x)N−2[1− F (x)]f(x)dx (5)

We want to emphasize that, for the simple case we are considering, to obtain the expected revenue of
the auction it is not necessary nor suggested to compute the integral: for this purpose it is enough to find
the expected value of the transaction prices. The expected value does not suffer from the bias and should
therefore be used in estimation. However, for expositional purposes, we are going to refer to the integral as a
benchmark for the heavy bias that affects the nonparametric estimator. Estimation of the distribution F and
computation of the integral will be required in order to compute the optimal reserve price and to perform
counterfactual analysis. For this reason, it is important to understand how, and with what magnitude, the
nonparametric estimator can affect our analysis. For simplicity, we will focus on Second Price auctions, so
that the distribution of the bids corresponds to the distribution of the private values. Because F is unknown

12The result presented in Falk (1985) extends to the generic k-th order statistics. We denote by Gk:N the Extreme Value
limit distribution for the k-th order statistics. Then, if one of the von Mises conditions is satisfied, fk:N converges pointwise to
gk:N , for any possible k.

13Finding the normalizing constants aN , bN is not a straightforward task. In practice, for F ∈ D(G3), we might start with
the following guess: bN that solves F (bN ) = 1− 1/N .

https://doi.org/10.21919/remef.v16i2.596
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we cannot compute directly the value of the integral.
We are going to show that the integral can be transformed and expressed in terms of EVDs, with no

significant loss in precision.
[Expected Revenue] If there exists aN > 0 and bN such that

P
(
ZN:N−bN

aN
≤ z
)
converges to G(z), then

E[R|N ] ≈
∫ w−bN

aN

− bN
aN

(N − 1)(aN t+ bN )[− logG(t)
1
N ]g(t)dt (6)

For instance, for the class of distributions F ∈ D(G3), the expression becomes

E3[R|N ] ≈
∫ w−bN

aN

− bN
aN

(N − 1)(aN t+ bN )
e−2t−e

−t

N
dt (7)

We construct the proof through a sequence of simple Lemmas. FN−2(aN t + bN ) ≈ G(t) This comes
directly from the assumption of the theorem. [1− F (aN t+ bN )] ≈ − logG(t)

1
N

Proof : if F belongs to the domain of attraction of G then

FN (aN t+ bN ) −→ G(t)⇐⇒ N logF (aN t+ bN ) −→ logG(t)⇐⇒

N [F (aN t+ bN )− 1] −→ logG(t)⇐⇒ N [1− F (aN t+ bN )] −→ − logG(t)⇐⇒
1− F (aN t+ bN )

− logG(t)
1
N

−→ 1

� aNf(aN t+ bN ) ≈ 1
N
g(t)
G(t)

Proof : Because F has a derivative f near the right end of the support, the previous condition implies

aNf(aNθ + bN )
1
N
g(θ)
G(θ)

=
F (aN t+ bN )− F (aNy + bN )

[− logG(t)
1
N ]− [− logG(y)

1
N ]
−→ 1

for some θ ∈ (t, y).
�

Proof of Theorem 2 The proof of the theorem is concluded by performing a simple change of variable in
the original integral, t = (x− bN )/aN , and applying the previous lemmas.

E[R|N ] =

∫ w−bN
aN

− bN
aN

N(N − 1)(aN t+ bN )F (aN t+ bN )N−2∗

∗[1− F (aN t+ bN )]f(aN t+ bN )aNdt ≈

≈
∫ w−bN

aN

− bN
aN

N(N − 1)(aN t+ bN )G(t)[− logG(t)
1
N ]

g(t)

NG(t)
dt =

=

∫ w−bN
aN

− bN
aN

(N − 1)(aN t+ bN )[− logG(t)
1
N ]g(t)dt
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The approximation does not depend on the unknown distribution F : the new expression depends entirely
on the normalizing constants aN , bN and on the EVD, G. Procedures that test for the particular type of
EVD to use have long existed in the literature.

The normalizing constants can be estimated through some standard minimum distance (MD) criterion14.
A widely used criterion is the Cramér-von-Mises, which uses the integral of the squared difference between
the empirical and the estimated distribution functions. Among the estimators based on non-Hilbertian15

metrics, the most common is the Kolmogorov-Smirnof

{âN , b̂N} = arg min
aN ,bN

sup
xn

∣∣∣∣Ĝk:N (xn − bNaN

)
−G(m)(xn)

∣∣∣∣ (8)

where m = N −k+ 1. It is well known that Kolmogorov-Smirnof distance immediately provides a test for
goodness of fit. This procedure is simple and avoids having to compute the maximum likelihood estimator
of the generalized extreme value distribution.

Optimal Reserve Value: Using a similar approach we can estimate the optimal Reserve Price (RP ) of the
auction, given a specific value for the seller, x016: through a numerical search over the parameter θ = RP−bN

aN

that maximizes the expected revenue

max
θ

E[R|N, θ] =

∫ w−bN
aN

θ

(N − 1)(aN t+ bN )[− logG(t)
1
N ]g(t)dt+ x0G (θ) +

+N(aNθ + bN )[logG(θ)
1
N ]G(θ)

(9)

Notice that Lemma 2 suggests the possibility to approximate the right tail of the distribution17 F with a
Generalized Pareto distribution (see Pickands (1975), Balkema and de Haan (1974)).

Can we use what we learn from auctions with high participation (that is, with high N) to make inference
about auctions with a low number of bidders? The theory proves that for second price, IPV auctions, the
optimal reserve price does not depend on N : therefore, the reserve price computed in high-participation
auctions holds for any possible N . On the other hand, the expected revenue from an auction increases with
N . Given sufficient variation in N , we can estimate the sequences {âN , b̂N}Nobserved and interpolate their
values for smaller Ns. Plugging the new values into the integral returns the expected revenue. The next
section shows results from Monte Carlo simulations.

14Let {Pθ} be a family of probabilities indexed by θ, and let µ be a metric between probabilities. Let θ̂(P ) be the corresponding
minimum distance functional, i.e., the solution to µ(P, Pθ̂) = minθ µ(P, Pθ). The MD functional is consistent and robust over
µ-neighborhoods (see Rao-Schuster-Littel 1975, Parr-Schucany 1980, and Donoho-Liu 1988)

15By Hilbertian we mean based on a quadratic measure of deviation

16The expected revenue with reserve price is equal to

max
θ

E[R|N,RP ] =

∫ w

RP
N(N − 1)xF (x)N−2[1− F (x)]f(x)dx+

+x0F (RP )N +N(RP )[1− F (RP )]F (RP )N−1

17The relative magnitude of this right tail depends on N and on the particular parental distribution F .
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5 Monte Carlo Simulations

In this section we are going to present some results from Monte Carlo simulations in support of the theory
advanced in the previous chapters. In order to simplify the discussion, we are going to focus on the case
of Second Price auctions: this implies that the bids drawn are also the valuations of the bidders. Using
MATLAB, we draw n observations from two distributions, chosen for their opposite N -asymptotic behavior:
the first distribution is a Normal with parameters µ = 10 and σ = 2. The second distribution is a Negative
Exponential with parameter λ = 0.2. The specific choice of the parameters does not affect the results. As
discussed above, extremes of a normal distribution converge at a slow rate to the Gumbel family, whereas the
negative exponential has the fastest possible rate of convergence. Ideally, a general distribution’s behavior will
follow between these two. The normal distribution is used as a worst-case scenario, while the exponential as a
best-case scenario. We are considering asymptotic behavior by letting bothN (that is, the number of bidders),
and n (that is, the number of auctions, i.e. the sample size) increase. While raising n improves precision of
all estimators, increasing N has opposite effects on EVT-based estimators and on standard nonparametric
ones. In particular, higher values of N make EVD a better approximation to the true distribution, while
nonparametric estimators move further away from it.

From equation (2), we estimate the nonparametric distribution of our set of random draws, which we
then use to find the normalizing constants using the Kolmogorov-Smirnof measure (see equation 8).18 A
useful outcome of the Kolmogorov-Smirnof criterion is the availability of a test for the goodness of fit: in all
simulations, the normalized empirical distribution is not significantly different from the corresponding EVD,
the Gumbel19.

Figure 2 and Figure 3 provide a graphical representations of the goodness of fit of the nonparametric
estimator and of the estimator based on EVT20. While we used different values for both N and n for our
simulations, for brevity we only plot results for N taking values 5 and 100, and n values 50 or 5,000. Both
N = 100 and n = 5, 000 are good representations of a large sample, for the purpose of asymptotic behavior.
The remaining values define a realistic small sample. The approximate-distribution is represented by the
dash curve; the continuous curve represents the nonparametric estimator. The dotted curve is the true CDF.

The figures immediately illustrate four points: first, as the number of bidders rises the bias of the non-
parametric estimator increases. Second, the nonparametric estimator is biased in two different regions of the
support: in the upper tail, because those observations are overweighted, and in the lower tail. Third, the
size of the dataset seems to have very little effect on the quality of the estimates. Finally, for the case of
the Negative Exponential the approximation performs well, whereas when we analyze the case of the normal
distribution the fit is less satisfactory: as the number of bidders increases, EVT delivers better results than
the nonparametric estimator, but the bias in the lower tail stays relevant.

18We compared them with estimates obtained with the Cramér-von Mises criterion and found no significant differences.
19We can produce standard errors for expected revenue and reserve price through a Bootstrapping procedure. However, given

the erratic behavior of the nonparametric estimator for the reserve price in the next chapter, and the impossibility to draw a
comparison with the standard errors produced under EVT, we decided to leave them out.

20because EVT is based on an approximation, we are going to call this estimator the “approximate-distribution". As discussed
in the previous section, the approximate-distribution will be an appropriately normalized gPd
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Figure 2: CDF estimation: Normal, µ = 10, σ = 2.
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Figure 3: CDF estimation: Negative Exponential, λ = 0.2

Next, we are going to show how the different approaches perform in predicting the expected revenue
from the auction, computed using equation (7). Rather than analysing asymptotic behavior, we here focus
on plausible datasets of size 50 and 100, though in our simulations we produced results for a wide range of
values. Obviously, increasing sample size makes all estimators more precise. However, we show that it is
the impact of the number of bidders, N , that dominates on all functionals that we compute. In the next
simulations, we let N vary between 5 and 50 to better represent realistic bidding environments. As the
number of bidders increases from 5 to 50, the expected revenue from the auction increases correspondingly:
this is intuitive, because the expectation of receiving a higher bid increases with the number of participants
in the auction. Notice that the nonparametric estimator is systematically upward biased. The reason is
that the revenue depends on the upper tail of the distribution which, as explained before, is upward biased
because of oversampling of the large values of the support. The problem becomes more severe as the number
of bidders grows.

EVT provides a good estimate of the expected revenue: the bias from the Approximation is high for
small number of bidders, but it rapidly decreases. The sample size affects the precision of the estimation of
the normalizing constants, âN , b̂N , and, with them, the precision of the fit. The nonparametric estimator
however is severely affected by the number of bidders: for both cases it starts around 50% and increases above
1,000% when N reaches the value of 50. Increasing further the sample size does not significantly benefit the
estimates.

Again, EVT performs slightly better when the parental distribution is the negative exponential, but the
difference in the fit is small. The nonparametric approach favors distributions with slow rate of convergence,
like the normal one; but still drastically underperforms compared to EVT.
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Table 1. Expected Revenue - Normal distribution µ = 10;σ = 2

N. bidders n. auctions True Rev. EVT Rev. NonP Rev. Bias EVT % Bias NonP %

5 50 10.95 8.78 17.11 −19.80 56.30

5 100 10.95 8.79 17.40 −19.69 59.00

50 50 13.72 13.43 172.88 −2.14 1160.05

50 100 13.72 13.41 174.58 −2.25 1172.47

Table 2. Expected Revenue - Negative Exponential λ = 0.2

N. bidders n. auctions True Rev. EVT Rev. NonP Rev. Bias EVT % Bias NonP %

5 50 6.44 4.81 9.43 −25.38 46.65

5 100 6.44 5.46 11.26 −15.16 74.87

50 50 17.33 17.27 231.63 −0.37 1236.60

50 100 17.33 16.48 221.44 −4.89 1177.81

Next, we are going to focus on the optimal Reserve Price of the auction when the seller has an outside
value equal to x0 (we initially assume that x0 = 0 for both distributions; in a second moment we increase
x0 to 1.25 for the negative exponential case, and to 10.8 for the normal. We report results only for this last
case). We compute the optimal Reserve Price using equation (9). Tables 3 - 4 present results for the two
distributions.

Table 3. reserve Price - Normal µ = 10, σ = 2, x0 = 10.8

N. bidders n. auctions True RP. EVT RP. NonP RP. Bias EVT % Bias NonP %

5 50 12.08 13.23 12.31 9.52 1.90

5 100 12.08 13.16 12.27 8.94 1.57

50 50 12.08 12.34 10.8 2.15 −10.60

50 100 12.08 12.33 10.8 2.06 −10.60

Table 4. reserve Price - Negative Exponential λ = 0.2, x0 = 1.25

N. bidders n. auctions True RP. EVT RP. NonP RP. Bias EVT % Bias NonP %

5 50 6.25 7.85 1.25 −25.6 −80

5 100 6.25 7.79 1.25 −24.64 −80

50 50 6.25 7.07 1.25 −13.12 −80

50 100 6.25 6.86 1.25 −9.76 −80

Auction theory shows that the true reserve price is not affected by the number of bidders, nor by the
sample size: within the boundaries of numerical computation, the Monte Carlo exercise supports the theory.
However, the number of bidders does affect the estimated reserve price under both approaches. The EVT-
estimator gets closer to the true value as N increases. On the other hand, nonparametric estimator gets worse
as N increases. Moreover, the nonparametric estimator runs in computational problems: with the negative
exponential the numerical search of the optimum tends to get stuck in the initial region of the support.
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The optimization algorithm begins the search around x0, in an area where the function is flat and after a
few iterations it stops because it believes the function cannot be improved any further. The nonparametric
estimator severely underestimates the negative exponential on the lower tail, making numerical search useless.
It could be possible to use a different starting value for the numerical search, on the right of this flat area,
however the optimization algorithm is very susceptible to the spikes of the nonparametric estimator: results
become very fragile, and we notice that computation time increases significantly.

The magnitude of the sample size affects only slightly the precision of the estimates: this confirms the
argument that convergence occurs slowly.

Last, from the estimates of the normalizing constant we try to make out-of-sample predictions about the
expected revenue. As above, we take draws from a normal distribution and a negative exponential. We try
to interpolate the expected revenue for N between 5 and 15. For each value of N we draw data from 50
auctions (n = 50).

Table 5. Interpolation Expected Revenue - Normal Distribution µ = 10, σ = 0.2

N. bidders Interpolated Revenue True Revenue

15 11.92 11.92

10 11.80 11.3

5 11.74 9.54

Table 6. Interpolation Expected Revenue - Negative Exponential λ = 0.2,

N. bidders Interpolated Revenue True Revenue

15 11.82 11.82

10 10.62 10.2

5 8.92 7.23

As expected, the interpolation deteriorates the further we go out-of-sample. However, the expected
revenue functional seems to mitigate the progressive bias of the normalizing constant: as far as this exercises
is concerned, the results seem close to the true ones.

We have derived results from other distributions, such as uniform, lognormal and mixed distributions
for which there is no analytical expression, and the evidence seems consistent. The approach based on
EVT systematically provides better estimates than the nonparametric approach. It is to be noted that the
approximation method is computationally easier to perform, as it breaks down to the estimation of only
two normalizing constants: all the subsequent steps can be solved analytically, using the appropriate gPd or
EVD.

6 Conclusions

Econometricians are usually left to make arbitrary parametric choices for the estimation of their models. In
this article we showed how EVT guides us towards a natural parametric approximation in auction models
with incomplete data.

We addressed the quality of nonparametric estimators in auction models with incomplete data, and we
show through simulations the magnitude of the bias that affects estimates of functionals of practical interests.
Monte Carlo simulations show that, even when the sample size increases the bias stays relevant and does not
disappear fast enough. The number of bidders strongly affects the precision of the estimates, and dominates
benefits coming from large sample sizes.
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The approximate distribution performs better than its nonparametric counterpart, even when the ap-
proximation is known to occur slowly, such as the case of the normal distribution. Increasing the value of N
makes the EVT estimates more precise, and, simultaneously, the nonparametric estimates worse.

Even though the form of the approximating distribution is analytical, the set of assumptions that justify its
use are very mild and we could reasonably expect most of existing distributions to satisfy them. The practical
advantage of adopting analytical formulas relies on saving computational time, making the computation of
the relevant measures a minor feat.
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